

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9889598/publications.pdf

Version: 2024-02-01

Υπ Υπ

#	Article	IF	CITATIONS
1	<i>TRANS-ACTING SIRNA3-</i> derived short interfering RNAs confer cleavage of mRNAs in rice. Plant Physiology, 2022, 188, 347-362.	4.8	6
2	Origin, evolution and diversification of plant ARGONAUTE proteins. Plant Journal, 2022, 109, 1086-1097.	5.7	24
3	Mechanism for the genomic and functional evolution of the MIR2118 family in the grass lineage. New Phytologist, 2022, 233, 1915-1930.	7.3	5
4	NAD+-capped RNAs are widespread in rice (Oryza sativa) and spatiotemporally modulated during development. Science China Life Sciences, 2022, 65, 2121-2124.	4.9	4
5	NTP4 modulates miRNA accumulation via asymmetric modification of miRNA/miRNA* duplex. Science China Life Sciences, 2021, 64, 832-835.	4.9	2
6	Comparative ribosome profiling reveals distinct translational landscapes of salt-sensitive and -tolerant rice. BMC Genomics, 2021, 22, 612.	2.8	10
7	Distinct Evolutionary Profiles and Functions of microRNA156 and microRNA529 in Land Plants. International Journal of Molecular Sciences, 2021, 22, 11100.	4.1	8
8	Study on RNAi-based herbicide for Mikania micrantha. Synthetic and Systems Biotechnology, 2021, 6, 437-445.	3.7	7
9	Construction of High-Quality Rice Ribosome Footprint Library. Frontiers in Plant Science, 2020, 11, 572237.	3.6	5
10	Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annual Review of Cell and Developmental Biology, 2019, 35, 407-431.	9.4	228
11	Biogenesis of a 22-nt microRNA in Phaseoleae species by precursor-programmed uridylation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8037-8042.	7.1	46
12	The â€~how' and â€~where' of plant micro <scp>RNA</scp> s. New Phytologist, 2017, 216, 1002-1017.	7.3	409
13	ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biology, 2017, 15, e2001272.	5.6	81
14	PARylation of the forkheadâ€associated domain protein DAWDLE regulates plant immunity. EMBO Reports, 2016, 17, 1799-1813.	4.5	42
15	Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. ELife, 2016, 5, .	6.0	104
16	The Exosome and Trans-Acting Small Interfering RNAs Regulate Cuticular Wax Biosynthesis during Arabidopsis Inflorescence Stem Development. Plant Physiology, 2015, 167, 323-336.	4.8	51
17	Distinct and Cooperative Activities of HESO1 and URT1 Nucleotidyl Transferases in MicroRNA Turnover in Arabidopsis. PLoS Genetics, 2015, 11, e1005119.	3.5	125