Eveline Lescrinier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988869/publications.pdf

Version: 2024-02-01

112 2,329 25 41 papers citations h-index g-index

123 123 2819
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes, 2021, 9, 71.	1.3	162
2	Cyclohexene Nucleic Acids (CeNA):Â Serum Stable Oligonucleotides that Activate RNase H and Increase Duplex Stability with Complementary RNA. Journal of the American Chemical Society, 2000, 122, 8595-8602.	6.6	129
3	The Protein Phosphatase 2A Phosphatase Activator Is a Novel Peptidyl-Prolyl cis/trans-Isomerase. Journal of Biological Chemistry, 2006, 281, 6349-6357.	1.6	85
4	A PKS/NRPS/FAS Hybrid Gene Cluster from Serratia plymuthica RVH1 Encoding the Biosynthesis of Three Broad Spectrum, Zeamine-Related Antibiotics. PLoS ONE, 2013, 8, e54143.	1.1	75
5	Synthesis and Evaluation of 5-Substituted 2′-deoxyuridine Monophosphate Analogues As Inhibitors of Flavin-Dependent Thymidylate Synthase in <i>Mycobacterium tuberculosis</i> Chemistry, 2011, 54, 4847-4862.	2.9	68
6	Structural basis for the high Ca ²⁺ affinity of the ubiquitous SERCA2b Ca ²⁺ pump. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18533-18538.	3.3	67
7	Synthesis and Conformational Study of 3-Hydroxy-4-(Hydroxymethyl)-1-Cyclohexanyl Purines and Pyrimidines. Journal of Organic Chemistry, 1997, 62, 2861-2871.	1.7	66
8	Solution structure of a HNA–RNA hybrid. Chemistry and Biology, 2000, 7, 719-731.	6.2	66
9	Synthesis of Modified Peptidoglycan Precursor Analogues for the Inhibition of Glycosyltransferase. Journal of the American Chemical Society, 2012, 134, 9343-9351.	6.6	58
10	Synthesis and Pairing Properties of Oligonucleotides Containing 3-Hydroxy-4-hydroxymethyl-1-cyclohexanyl Nucleosides. Chemistry - A European Journal, 1999, 5, 2139-2150.	1.7	53
11	RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA). Nucleic Acids Research, 2001, 29, 4941-4947.	6.5	53
12	Phage Display-directed Discovery of LEDGF/p75 Binding Cyclic Peptide Inhibitors of HIV Replication. Molecular Therapy, 2012, 20, 2064-2075.	3.7	49
13	Difference in conformational diversity between nucleic acids with a six-membered 'sugar' unit and natural 'furanose' nucleic acids. Nucleic Acids Research, 2003, 31, 2975-2989.	6.5	48
14	Structural Characterization and Biological Evaluation of Small Interfering RNAs Containing Cyclohexenyl Nucleosides. Journal of the American Chemical Society, 2007, 129, 9340-9348.	6.6	46
15	Discovery of fructans in Archaea. Carbohydrate Polymers, 2019, 220, 149-156.	5.1	46
16	Baseâ^'Base Interactions in the Minor Groove of Double-Stranded DNA. Journal of Organic Chemistry, 2006, 71, 5423-5431.	1.7	40
17	The naturally occurring N6-threonyl adenine in anticodon loop of Schizosaccharomyces pombe tRNAi causes formation of a unique U-turn motif. Nucleic Acids Research, 2006, 34, 2878-2886.	6.5	35
18	Isoguanine and 5â€Methylâ€Isocytosine Bases, In Vitro and In Vivo. Chemistry - A European Journal, 2015, 21, 5009-5022.	1.7	33

#	Article	IF	CITATIONS
19	Contribution of dihydrouridine in folding of the D-arm in tRNA. Organic and Biomolecular Chemistry, 2015, 13, 4960-4966.	1.5	33
20	Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses, 2021, 13, 2228.	1.5	31
21	Design of Bioactive Peptides from Naturally Occurring \hat{l} /4-Conotoxin Structures. Journal of Biological Chemistry, 2012, 287, 31382-31392.	1.6	30
22	Base pairing of anhydrohexitol nucleosides with 2,6-diaminopurine, 5- methylcytosine and uracil asbase moiety. Nucleic Acids Research, 1999, 27, 1450-1456.	6.5	29
23	Cyclohexenyl nucleic acids: conformationally flexible oligonucleotides. Nucleic Acids Research, 2005, 33, 2452-2463.	6.5	29
24	Discovery of an Acyclic Nucleoside Phosphonate that Inhibits ⟨i⟩Mycobacterium tuberculosis⟨/i⟩ ThyX Based on the Binding Mode of a 5â€Alkynyl Substrate Analogue. ChemMedChem, 2013, 8, 1373-1383.	1.6	28
25	A combination of polyunsaturated fatty acid, nonribosomal peptide and polyketide biosynthetic machinery is used to assemble the zeamine antibiotics. Chemical Science, 2015, 6, 923-929.	3.7	28
26	Inhibition of glutamate decarboxylase (GAD) by ethyl ketopentenoate (EKP) induces treatment-resistant epileptic seizures in zebrafish. Scientific Reports, 2017, 7, 7195.	1.6	28
27	DNA-Binding Ligands from Peptide Libraries Containing Unnatural Amino Acids. Chemistry - A European Journal, 1998, 4, 425-433.	1.7	26
28	Influence of the Nucleobase and Anchimeric Assistance of the Carboxyl Acid Groups in the Hydrolysis of Amino Acid Nucleoside Phosphoramidates. Chemistry - A European Journal, 2012, 18, 857-868.	1.7	26
29	Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins. Toxins, 2016, 8, 288.	1.5	26
30	Discovery of a new subclass of \hat{l}_{\pm} -conotoxins in the venom of Conus australis. Toxicon, 2014, 91, 145-154.	0.8	25
31	Extended targeting potential and improved synthesis of Microcin C analogs as antibacterials. Bioorganic and Medicinal Chemistry, 2011, 19, 5462-5467.	1.4	23
32	Xylonucleic acid: synthesis, structure, and orthogonal pairing properties. Nucleic Acids Research, 2015, 43, 7189-7200.	6.5	23
33	Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Research, 2019, 47, 7130-7142.	6.5	23
34	Where cone snails and spiders meet: design of small cyclic sodiumâ€channel inhibitors. FASEB Journal, 2019, 33, 3693-3703.	0.2	23
35	Isolation and Characterization of a Pentasaccharide from <i>Stellaria media</i> . Journal of Natural Products, 2008, 71, 1833-1836.	1.5	21
36	3-Phosphono-l-alanine as pyrophosphate mimic for DNA synthesis using HIV-1 reverse transcriptase. Organic and Biomolecular Chemistry, 2011, 9, 111-119.	1.5	21

#	Article	IF	CITATIONS
37	Solution Structure and Conformational Dynamics of Deoxyxylonucleic Acids (dXNA): An Orthogonal Nucleic Acid Candidate. Chemistry - A European Journal, 2012, 18, 869-879.	1.7	21
38	Structure-Function Elucidation of a New $\hat{l}\pm$ -Conotoxin, Lo1a, from Conus longurionis. Journal of Biological Chemistry, 2014, 289, 9573-9583.	1.6	21
39	Structure of the Pyrimidine-rich Internal Loop in the Poliovirus 3′-UTR: The Importance of Maintaining Pseudo-2-fold Symmetry in RNA Helices Containing Two Adjacent Non-canonical Base-pairs. Journal of Molecular Biology, 2003, 331, 759-769.	2.0	20
40	Iminodipropionic Acid as the Leaving Group for DNA Polymerization by HIV-1 Reverse Transcriptase. ChemBioChem, 2011, 12, 1868-1880.	1.3	20
41	A Synthetic Substrate of DNA Polymerase Deviating from the Bases, Sugar, and Leaving Group of Canonical Deoxynucleoside Triphosphates. Chemistry and Biology, 2013, 20, 416-423.	6.2	20
42	Synthesis and Structure–Activity Relationship Studies of 2â€(1,3,4â€Oxadiazoleâ€2(3 <i>H</i>)â€thione)â€3â€aminoâ€5â€arylthieno[2,3â€ <i>b</i>)pyridines as Inhibito ChemMedChem, 2014, 9, 2587-2601.	orsloof DRAI	K220
43	The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in Staphylococcus aureus by Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie - International Edition, 2020, 59, 10549-10556.	7.2	20
44	Homo-N-nucleosides: Incorporation into oligonucleotides and antiviral activity. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1465-1468.	1.0	19
45	α-Homo-DNA and RNA Form a Parallel Oriented Non-A, Non-B-Type Double Helical Structure. Chemistry - A European Journal, 2001, 7, 5183-5194.	1.7	19
46	Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae). Annals of Botany, 2013, 111, 385-393.	1.4	19
47	Base pairing involving artificial bases in vitro and in vivo. Chemical Science, 2016, 7, 995-1010.	3.7	19
48	Sedoheptulose accumulation under CO2 enrichment in leaves of Kalanchoë pinnata: a novel mechanism to enhance C and P homeostasis?. Journal of Experimental Botany, 2013, 64, 1497-1507.	2.4	18
49	Base substituted 5′-O-(N-isoleucyl)sulfamoyl nucleoside analogues as potential antibacterial agents. Bioorganic and Medicinal Chemistry, 2014, 22, 2875-2886.	1.4	18
50	Synthesis and Biological Evaluation of Pyrrolo[2,1â€ <i>f</i>][1,2,4]triazine <i>C</i> â€Nucleosides with a Ribose, 2′â€Deoxyribose, and 2′,3′â€Dideoxyribose Sugar Moiety. ChemMedChem, 2018, 13, 97-104.	1.6	17
51	Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile. Biochemical Pharmacology, 2017, 135, 69-78.	2.0	16
52	Solution Structure of a Hexitol Nucleic Acid Duplex with Four Consecutive Tâ <t 1291-1310.<="" 2000,="" 83,="" acta,="" base="" chimica="" helvetica="" pairs.="" td=""><td>1.0</td><td>14</td></t>	1.0	14
53	Molecular-Dynamics Studies of Single-Stranded Hexitol, Altritol, Mannitol, and Ribose Nucleic Acids (HNA, MNA, ANA, and RNA, Resp.) and of the Stability of HNAâ‹RNA, ANAâ‹RNA, and MNAâ‹RNA Duplexes. Helvetica Chimica Acta, 2000, 83, 2153-2182.	1.0	14
54	Selection of New Sequence-Selective Unnatural Peptides Binding to Double-Stranded Deoxyribonucleic Acids (dsDNA) by Means of a Gel-Retardation Experiment for Library Analysis. Helvetica Chimica Acta, 2002, 85, 2258-2283.	1.0	14

#	Article	IF	Citations
55	An N-terminal Ca2+-binding motif regulates the secretory pathway Ca2+/Mn2+-transport ATPase SPCA1. Journal of Biological Chemistry, 2019, 294, 7878-7891.	1.6	14
56	Formation of Trisaccharide Nucleosides During Disaccharide Nucleoside Synthesis. European Journal of Organic Chemistry, 1998, 1998, 2193-2199.	1.2	13
57	A Short Path Synthesis of [13C/15N] Multilabeled Pyrimidine Nucleosides Starting from Glucopyranose Nucleosides. Journal of Organic Chemistry, 2003, 68, 1867-1871.	1.7	13
58	Complete NMR characterization of lychnose from Stellaria media (L.) Vill. Carbohydrate Research, 2006, 341, 2744-2750.	1.1	13
59	Pc16a, the first characterized peptide from Conus pictus venom, shows a novel disulfide connectivity. Peptides, 2012, 34, 106-113.	1,2	13
60	Metabolism of galactosyl-oligosaccharides in Stellaria media – Discovery of stellariose synthase, a novel type of galactosyltransferase. Phytochemistry, 2010, 71, 1095-1103.	1.4	12
61	Self-complementary sequence context in mature miRNAs. Biochemical and Biophysical Research Communications, 2010, 392, 572-576.	1.0	12
62	Influence of circular permutations on the structure and stability of a sixâ€fold circular symmetric designer protein. Protein Science, 2020, 29, 2375-2386.	3.1	12
63	Design and synthesis of nucleolipids as possible activated precursors for oligomer formation via intramolecular catalysis: stability study and supramolecular organization. Journal of Systems Chemistry, 2014, 5, 5.	1.7	11
64	(D)- AND (L)-CYCLOHEXENYL-G, A NEW CLASS OF ANTIVIRAL AGENTS: SYNTHESIS, CONFORMATIONAL ANALYSIS, MOLECULAR MODELING, AND BIOLOGICAL ACTIVITY. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 727-730.	0.4	10
65	Structure of the α-Homo-DNA:RNA Duplex and the Function of Twist and Slide To Catalogue Nucleic Acid Duplexes. Chemistry - A European Journal, 2007, 13, 90-98.	1.7	10
66	Cyclin G-associated kinase (GAK) affinity and antiviral activity studies of a series of 3-C-substituted isothiazolo[4,3-b]pyridines. European Journal of Medicinal Chemistry, 2019, 163, 256-265.	2.6	10
67	Synthesis and Properties of O-D-ribofuranosyl-(1″→2′)-guanosine-5″- O-phosphate and Its Derivatives. Helvetica Chimica Acta, 2003, 86, 504-514.	1.0	9
68	Identification of small peptides inhibiting the integraseâ€LEDGF/p75 interaction through targeting the cellular coâ€factor. Journal of Peptide Science, 2013, 19, 651-658.	0.8	9
69	Synthesis and Structure–Activity Relationship Studies of Benzo[b][1,4]oxazinâ€3(4 H)â€one Analogues as Inhibitors of Mycobacterial Thymidylate Synthaseâ€X. ChemMedChem, 2019, 14, 645-662.	1.6	9
70	Functional and Molecular Characterization of the Halomicrobium sp. IBSBa Inulosucrase. Microorganisms, 2021, 9, 749.	1.6	9
71	Synthesis and biological evaluation of 68Ga labeled bis-DOTA-3,3′-(benzylidene)-bis-(1H-indole-2-carbohydrazide) as a PET tracer for in vivo visualization of necrosis. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3216-3220.	1.0	8
72	Synthesis and biological evaluation of 68Ga-bis-DOTA-PA as a potential agent for positron emission tomography imaging of necrosis. Nuclear Medicine and Biology, 2013, 40, 816-822.	0.3	8

#	Article	IF	Citations
73	Drug-carrier binding and enzymatic carrier digestion in amorphous solid dispersions containing proteins as carrier. International Journal of Pharmaceutics, 2019, 563, 358-372.	2.6	8
74	Synthesis and Properties of Phosphorylated 3′-O-β-D-Ribofuranosyl-2′-deoxythymidine. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 359-371.	0.4	7
75	Efficient and Accurate Potential Energy Surfaces of Puckering in Sugar-Modified Nucleosides. Journal of Chemical Theory and Computation, 2021, 17, 3814-3823.	2.3	7
76	SYNTHESIS OF <i>N</i> ⁶ -ALKYLATED ADENOSINE DERIVATIVES. Nucleosides & Nucleotides, 1996, 15, 1863-1869.	0.5	6
77	Synthesis of Nicotinamide Adenine Dinucleotide (NAD) Analogues with a Sugar Modified Nicotinamide Moiety. Helvetica Chimica Acta, 2007, 90, 1266-1278.	1.0	6
78	Emimycin and its nucleoside derivatives: Synthesis and antiviral activity. European Journal of Medicinal Chemistry, 2018, 144, 93-103.	2.6	6
79	Methylated Nucleobases: Synthesis and Evaluation for Base Pairing Inâ€Vitro and Inâ€Vivo. Chemistry - A European Journal, 2018, 24, 12695-12707.	1.7	6
80	Propargylated Purine Deoxynucleosides: New Tools for Fluorescence Imaging Strategies. Molecules, 2019, 24, 468.	1.7	6
81	The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in <i>Staphylococcus aureus</i> by Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie, 2020, 132, 10636-10643.	1.6	6
82	Phenyltriazole-functionalized sulfamate inhibitors targeting tyrosyl- or isoleucyl-tRNA synthetase. Bioorganic and Medicinal Chemistry, 2020, 28, 115580.	1.4	6
83	Structural and Binding Study of Modified siRNAs with the Argonauteâ€2 PAZ Domain by NMR Spectroscopy. Chemistry - A European Journal, 2011, 17, 1519-1528.	1.7	5
84	Synthesis and in vitro enzymatic and antiviral evaluation of phosphoramidate d4T derivatives as chain terminators. Organic and Biomolecular Chemistry, 2012, 10, 146-153.	1.5	5
85	Hydroxy fatty acids for the delivery of dideoxynucleosides as anti-HIV agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 817-820.	1.0	5
86	NMR-based conformational analysis of $2\hat{a}\in ^2$,6-disubstituted uridines and antiviral evaluation of new phosphoramidate prodrugs. Bioorganic and Medicinal Chemistry, 2015, 23, 5809-5815.	1.4	5
87	Studies on Disaccharide Nucleoside Synthesis. Mechanism of the Formation of Trisaccharide Purine Nucleosides. Nucleosides & Nucleotides, 1999, 18, 691-692.	0.5	4
88	Synthesis and Conformational Properties ofO-β-D-Ribofuranosyl-(1″-2′)-guanosine and (Adenosine)-5″-phosphate. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1109-1111.	0.4	4
89	Cleavage of DNA without loss of genetic information by incorporation of a disaccharide nucleoside. Nucleic Acids Research, 2003, 31, 6758-6769.	6.5	4
90	Structure Determination of the Topâ€Loop of the Conserved 3′â€Terminal Secondary Structure in the Genome of Flaviviruses. ChemBioChem, 2010, 11, 1404-1412.	1.3	4

#	Article	IF	Citations
91	Dipeptides as Leaving Group in the Enzymeâ€Catalyzed DNA Synthesis. Chemistry and Biodiversity, 2012, 9, 2685-2700.	1.0	4
92	Synthesis and Conformation of Pentopyranoside Nucleoside Phosphonates. Journal of Organic Chemistry, 2019, 84, 6589-6603.	1.7	4
93	Stable Hairpin Structures Formed by Xyloseâ€Based Nucleic Acids. ChemBioChem, 2021, 22, 1638-1645.	1.3	4
94	Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication. Molecules, 2022, 27, 1052.	1.7	4
95	Synthesis and Properties of Oligonucleotides Containing 2,4-Dihydroxycyclohexyl Nucleosides. Helvetica Chimica Acta, 2005, 88, 3210-3224.	1.0	3
96	Effect of ethylene glycol and glycerol fructosides on the activity and product specificity of bacterial and plant fructosyltransferases. Biocatalysis and Biotransformation, 2009, 27, 328-339.	1.1	3
97	Synthesis of a C-Nucleoside Phosphonate by Base-Promoted Epimerization. Organic Letters, 2018, 20, 1203-1206.	2.4	3
98	Discovery of Novel Druggable Sites on Zika Virus NS3 Helicase Using X-ray Crystallography-Based Fragment Screening. International Journal of Molecular Sciences, 2018, 19, 3664.	1.8	3
99	Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site. ACS Pharmacology and Translational Science, 2021, 4, 1379-1389.	2,5	3
100	Determination of tacrolimus, three mono-demethylated metabolites and a M1 tautomer in human whole blood by liquid chromatography – tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2021, 205, 114296.	1.4	3
101	The biolabile $2\hat{a}\in^2$ -O-pivaloyloxymethyl modification in an RNA helix: an NMR solution structure. Organic and Biomolecular Chemistry, 2013, 11, 2638.	1.5	2
102	<i>N</i> ⁸ -Glycosylated 8-Azapurine and Methylated Purine Nucleobases: Synthesis and Study of Base Pairing Properties. Journal of Organic Chemistry, 2019, 84, 13394-13409.	1.7	2
103	Synthesis of 3′-fluoro-4′-amino-hexitol nucleosides with a pyrimidine nucleobase as building blocks for oligonucleotides. Tetrahedron, 2019, 75, 1107-1114.	1.0	2
104	Synthesis and Biological Evaluation of 1,3-Dideazapurine-Like 7-Amino-5-Hydroxymethyl-Benzimidazole Ribonucleoside Analogues as Aminoacyl-tRNA Synthetase Inhibitors. Molecules, 2020, 25, 4751.	1.7	2
105	d(GCGTAGC), an Equilibrium Between a Hairpin Structure and an Unusual Duplex. Nucleosides & Nucleotides, 1999, 18, 2721-2744.	0.5	1
106	A Natural Point Mutation Reveals Target Promiscuity of Toxins Isolated from the Sea Anemone Anthopleura Elegantissima. Biophysical Journal, 2012, 102, 658a.	0.2	1
107	15. Structure-function elucidation of a new α-conotoxin, Lo1a, from Conus longurionis. Toxicon, 2014, 91, 170-171.	0.8	1
108	NMR study on the interaction of the conserved CREX †stem†loop†in the Hepatitis E virus genome with a naphthyridine-based ligand. Organic and Biomolecular Chemistry, 2015, 13, 9665-9672.	1.5	1

#	Article	IF	CITATIONS
109	Synthesis and Pairing Properties of Oligonucleotides Containing 3-Hydroxy-4-hydroxymethyl-1-cyclohexanyl Nucleosides. , 1999, 5, 2139.		1
110	34. Miniaturization of \hat{l} /4-Conotoxins as Peptidomimetic Strategy to Develop Selective Sodium Channel Blockers. Toxicon, 2012, 60, 112.	0.8	0
111	Synthesis, Characterization and Satiety in Rats of PEG10kDa-CCK-10 and (Radio)lodinated PEG10kDa-CCK-10. Current Radiopharmaceuticals, 2009, 2, 177-183.	0.3	O
112	Discovery of an acyclic nucleoside phosphonate that inhibits Mycobacterium Tuberculosis ThyX based on the binding mode of a 5-alkynyl substrate analogue. , 2014, , .		0