
John F Seely

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9888685/publications.pdf Version: 2024-02-01

IOHN E SEELV

#	Article	IF	CITATIONS
1	Gigagauss magnetic field measurements using Zeeman broadening of Ne-like transitions in highly charged ions. Review of Scientific Instruments, 2021, 92, 053535.	1.3	1
2	X-ray spectrometer having 12 000 resolving power at 8 keV energy. Review of Scientific Instruments, 2017, 88, 103107.	1.3	4
3	Ultra-thin curved transmission crystals for high resolving power (up to E/ΔE = 6300) x-ray spectroscopy in the 6–13  keV energy range. Optics Letters, 2014, 39, 6839.	3.3	5
4	Measurement of the O2O3O4 and O3O4O5 super Coster–Kronig rates in tungsten via asymmetric diffraction spectrometry. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 115004.	1.5	4
5	Tungsten L transition line shapes and energy shifts resulting from ionization in warm dense matter. High Energy Density Physics, 2013, 9, 354-362.	1.5	14
6	Transmission crystal x-ray spectrometer covering the 6 keV–18 keV energy range with E/ΔE = 1800 instrumental resolving power. Review of Scientific Instruments, 2012, 83, 10E112.	1.3	5
7	Spatial resolution of a hard x-ray CCD detector. Applied Optics, 2010, 49, 4372.	2.1	2
8	Radiometry and metrology of a phase zone plate measured by extreme ultraviolet synchrotron radiation. Applied Optics, 2009, 48, 5970.	2.1	1
9	Enhanced x-ray resolving power achieved behind the focal circles of Cauchois spectrometers. Applied Optics, 2008, 47, 2767.	2.1	45
10	X-ray modulation transfer functions of photostimulable phosphor image plates and scanners. Applied Optics, 2008, 47, 5753.	2.1	22
11	Response of a SiC photodiode to extreme ultraviolet through visible radiation. Optics Letters, 2005, 30, 3120.	3.3	38
12	Normal-incidence efficiencies of multilayer-coated laminar gratings for the Extreme-Ultraviolet Imaging Spectrometer on the Solar-B mission. Applied Optics, 2004, 43, 1463.	2.1	30
13	Measurement of extreme-ultraviolet attenuation edges of magnesium, tin, and indium filters. Applied Optics, 2003, 42, 6374.	2.1	5
14	Skylab 3600 groove/mm replica grating with a scandium-silicon multilayer coating and high normal-incidence efficiency at 38-nm wavelength. Applied Optics, 2002, 41, 1846.	2.1	16
15	Extreme-ultraviolet thin-film interference in an Al-Mg-Al multiple-layer transmission filter. Applied Optics, 2002, 41, 5979.	2.1	3
16	Hard x-ray spectroscopy of NIF targets. AIP Conference Proceedings, 2000, , .	0.4	2