
Natalia-Carmen Rosca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9885806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional flow of radiative hybrid nanofluid past a permeable stretching/shrinking sheet with homogeneous-heterogeneous reaction. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 568-588.	2.8	13
2	Mixed convection flow of a hybrid nanofluid past a vertical wedge with thermal radiation effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 806-824.	2.8	5
3	Mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with a second order velocity model. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 75-91.	2.8	16
4	Cross flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1295-1319.	2.8	18
5	Axisymmetric flow of hybrid nanofluid due to a permeable non-linearly stretching/shrinking sheet with radiation effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2330-2346.	2.8	16
6	Hybrid Nanofluids Flows Determined by a Permeable Power-Law Stretching/Shrinking Sheet Modulated by Orthogonal Surface Shear. Entropy, 2021, 23, 813.	2.2	10
7	Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect. Mathematics, 2021, 9, 2220.	2.2	22
8	Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model. Mathematics, 2021, 9, 3047.	2.2	11
9	Nanofluid flow by a permeable stretching/shrinking cylinder. Heat and Mass Transfer, 2020, 56, 547-557.	2.1	22
10	Unsteady separated stagnation-point flow and heat transfer past a stretching/shrinking sheet in a copper-water nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2588-2605.	2.8	9
11	Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 3737-3754.	2.8	53
12	Stagnation point flow of a nanofluid past a non-aligned stretching/shrinking sheet with a second-order slip velocity. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 738-762.	2.8	7
13	Influence of temperature and magnetic field on the oblique stagnation-point flow for a nanofluid past a vertical stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2874-2894.	2.8	10
14	MHD stagnation-point flow and heat transfer of a nanofluid over a stretching/shrinking sheet with melting, convective heat transfer and second-order slip. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2089-2110.	2.8	10
15	Mixed convection heat transfer in a square porous cavity filled with a nanofluid with succion/injection effect. Computers and Mathematics With Applications, 2018, 76, 2665-2677.	2.7	35
16	Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid. Communications in Nonlinear Science and Numerical Simulation, 2017, 43, 1-13.	3.3	26
17	Mixed convection flow, heat transfer, species concentration near the stagnation point on a vertical flat plate with Stefan coupled blowing. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 77-103.	2.8	3
18	Axisymmetric rotational stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid using Tiwari and Das model. Scientific Reports, 2017, 7, 40299.	3.3	12

#	Article	IF	CITATIONS
19	A numerical study of the axisymmetric rotational stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2415-2432.	2.8	8
20	MHD mixed convection oblique stagnation-point flow on a vertical plate. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2744-2767.	2.8	5
21	Additional results for the problem of MHD boundary-layer flow past a stretching/shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2283-2294.	2.8	4
22	Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno's mathematical model. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 211-222.	5.3	137
23	Semi-analytical solution for the flow of a nanofluid over a permeable stretching/shrinking sheet with velocity slip using Buongiorno's mathematical model. European Journal of Mechanics, B/Fluids, 2016, 58, 39-49.	2.5	28
24	Lie group symmetry method for MHD double-diffusive convection from a permeable vertical stretching/shrinking sheet. Computers and Mathematics With Applications, 2016, 71, 1679-1693.	2.7	10
25	Numerical simulation of the stagnation point flow past a permeable stretching/shrinking sheet with convective boundary condition and heat generation. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 348-364.	2.8	18
26	Mixed convection boundary-layer flow near the lower stagnation point of a horizontal circular cylinder with a second-order wall velocity condition and a constant surface heat flux. IMA Journal of Applied Mathematics, 2015, 80, 431-451.	1.6	2
27	Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. European Journal of Mechanics, B/Fluids, 2015, 51, 61-67.	2.5	139
28	Mixed Convection Heat and Mass Transfer from a Vertical Surface Embedded in a Porous Medium. Transport in Porous Media, 2015, 109, 279-295.	2.6	9
29	Axisymmetric stagnation point flow and heat transfer towards a permeable moving flat plate with surface slip condition. Applied Mathematics and Computation, 2014, 233, 139-151.	2.2	12
30	Stagnation point flow and heat transfer over a non-linearly moving flat plate in a parallel free stream with slip. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 1822-1835.	3.3	10
31	Unsteady boundary layer flow of a nanofluid past a moving surface in an external uniform free stream using Buongiorno's model. Computers and Fluids, 2014, 95, 49-55.	2.5	55
32	Mixed convection boundary layer flow past a vertical flat plate embedded in a non-Darcy porous medium saturated by a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 970-987.	2.8	19
33	Boundary layer flow past a permeable shrinking sheet in a micropolar fluid with a second order slip flow model. European Journal of Mechanics, B/Fluids, 2014, 48, 115-122.	2.5	24
34	Mixed convection stagnation point flow past a vertical flat plate with a second order slip: Heat flux case. International Journal of Heat and Mass Transfer, 2013, 65, 102-109.	4.8	99
35	Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous media. International Communications in Heat and Mass Transfer, 2012, 39, 1080-1085.	5.6	37