Maria Jose Sampaio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/98848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar photocatalytic degradation of parabens using UiO-66-NH2. Separation and Purification Technology, 2022, 286, 120467.	7.9	58
2	Synthesis of Vitamin B3 through a Heterogeneous Photocatalytic Approach Using Metal-Free Carbon Nitride-Based Catalysts. Molecules, 2022, 27, 1295.	3.8	3
3	Synthesis and performance of a composite photocatalyst based on polyester-supported carbon nitride nanosheets for selective oxidation of anisyl alcohol. Surfaces and Interfaces, 2022, 30, 101938.	3.0	0
4	Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310, 121318.	20.2	72
5	Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2022, 12, 9397-9409.	11.2	47
6	Sustainable production of value-added chemicals and fuels by using a citric acid-modified carbon nitride optical semiconductor. Applied Catalysis A: General, 2021, 609, 117912.	4.3	10
7	Interactions of pharmaceutical compounds in water matrices under visible-driven photocatalysis. Journal of Environmental Chemical Engineering, 2021, 9, 104747.	6.7	6
8	Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors. Science of the Total Environment, 2021, 796, 148914.	8.0	93
9	Light-driven oxygen evolution from water oxidation with immobilised TiO2 engineered for high performance. Scientific Reports, 2021, 11, 21306.	3.3	8
10	Outstanding response of carbon nitride photocatalysts for selective synthesis of aldehydes under UV-LED irradiation. Catalysis Today, 2020, 357, 32-38.	4.4	12
11	Role of TiO2-based photocatalysts on the synthesis of the pharmaceutical precursor benzhydrol by UVA-LED radiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112350.	3.9	4
12	Efficient removal of parabens from real water matrices by a metal-free carbon nitride photocatalyst. Science of the Total Environment, 2020, 716, 135346.	8.0	37
13	Efficiency and stability of metal-free carbon nitride in the photocatalytic ozonation of oxamic acid under visible light. Journal of Environmental Chemical Engineering, 2020, 8, 104172.	6.7	7
14	Aqueous solution photocatalytic synthesis of <i>p</i> -anisaldehyde by using graphite-like carbon nitride photocatalysts obtained <i>via</i> the hard-templating route. RSC Advances, 2020, 10, 19431-19442.	3.6	12
15	Photo-Fenton degradation assisted by in situ generation of hydrogen peroxide using a carbon nitride photocatalyst. Journal of Water Process Engineering, 2020, 37, 101467.	5.6	21
16	Carbon-nanotube/TiO2 materials synthesized by a one-pot oxidation/hydrothermal route for the photocatalytic production of hydrogen from biomass derivatives. Materials Science in Semiconductor Processing, 2020, 115, 105098.	4.0	28
17	Sustainable Bleaching Process of Raw Cotton by TiO2 Light-Activated Nanoparticles. U Porto Journal of Engineering, 2020, 6, 11-21.	0.4	1
18	Visible-light-induced self-cleaning functional fabrics using graphene oxide/carbon nitride materials. Applied Surface Science, 2019, 497, 143757.	6.1	27

#	Article	IF	CITATIONS
19	Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Applied Catalysis B: Environmental, 2019, 248, 184-192.	20.2	124
20	Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Applied Catalysis B: Environmental, 2019, 252, 128-137.	20.2	85
21	Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts. Catalysts, 2019, 9, 990.	3.5	50
22	Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes. Chemical Engineering Journal, 2019, 355, 974-985.	12.7	124
23	Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-LED radiation. Catalysis Today, 2019, 328, 293-299.	4.4	43
24	Synthesis of selected aromatic aldehydes under UV-LED irradiation over a hybrid photocatalyst of carbon nanofibers and zinc oxide. Catalysis Today, 2019, 328, 286-292.	4.4	16
25	Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Materials Research Bulletin, 2018, 100, 322-332.	5.2	75
26	Photocatalytic synthesis of vanillin using N-doped carbon nanotubes/ZnO catalysts under UV-LED irradiation. Applied Catalysis A: General, 2018, 551, 71-78.	4.3	44
27	Selective Production of Benzaldehyde Using Metalâ€Free Reduced Graphene Oxide/Carbon Nitride Hybrid Photocatalysts. ChemistrySelect, 2018, 3, 8070-8081.	1.5	14
28	Ag-loaded ZnO materials for photocatalytic water treatment. Chemical Engineering Journal, 2017, 318, 95-102.	12.7	105
29	Kinetic modelling for the photocatalytic degradation of phenol by using <scp>TiO₂</scp> â€coated glass raschig rings under simulated solar light. Journal of Chemical Technology and Biotechnology, 2016, 91, 346-352.	3.2	13
30	Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol. Applied Catalysis A: General, 2016, 518, 198-205.	4.3	50
31	Carbon-based TiO2 materials for the degradation of Microcystin-LA. Applied Catalysis B: Environmental, 2015, 170-171, 74-82.	20.2	66
32	Nanodiamond–TiO ₂ composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Advances, 2015, 5, 58363-58370.	3.6	39
33	Evaluation of sol–gel TiO 2 photocatalysts modified with carbon or boron compounds and crystallized in nitrogen or air atmospheres. Chemical Engineering Journal, 2015, 277, 11-20.	12.7	26
34	Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts. Applied Catalysis B: Environmental, 2015, 178, 82-90.	20.2	93
35	Developing highly active photocatalysts: Gold-loaded ZnO for solar phenol oxidation. Journal of Catalysis, 2014, 316, 182-190.	6.2	65
36	Photocatalytic activity of TiO2-coated glass raschig rings on the degradation of phenolic derivatives under simulated solar light irradiation. Chemical Engineering Journal, 2013, 224, 32-38.	12.7	61

#	Article	IF	CITATIONS
37	Tailoring the properties of immobilized titanium dioxide/carbon nanotube composites for photocatalytic water treatment. Journal of Environmental Chemical Engineering, 2013, 1, 945-953.	6.7	20
38	Photocatalytic degradation of caffeine: Developing solutions for emerging pollutants. Catalysis Today, 2013, 209, 108-115.	4.4	88
39	The role of activated carbons functionalized with thiol and sulfonic acid groups in catalytic wet peroxide oxidation. Applied Catalysis B: Environmental, 2011, 106, 390-397.	20.2	73
40	Carbon nanotube–TiO2 thin films for photocatalytic applications. Catalysis Today, 2011, 161, 91-96.	4.4	93
41	Activated carbons treated with sulphuric acid: Catalysts for catalytic wet peroxide oxidation. Catalysis Today, 2010, 151, 153-158.	4.4	125