Jason Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988404/publications.pdf

Version: 2024-02-01

333 papers 23,251 citations

83 h-index 134 g-index

348 all docs

 $\begin{array}{c} 348 \\ \text{docs citations} \end{array}$

times ranked

348

20904 citing authors

#	Article	IF	CITATIONS
1	Imaging biomarker roadmap for cancer studies. Nature Reviews Clinical Oncology, 2017, 14, 169-186.	12.5	792
2	Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology, 2006, 82, 699-757.	1.0	561
3	A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. International Journal of Radiation Oncology Biology Physics, 2001, 49, 1171-1182.	0.4	410
4	⁸⁹ Zr-DFO-J591 for ImmunoPET of Prostate-Specific Membrane Antigen Expression In Vivo. Journal of Nuclear Medicine, 2010, 51, 1293-1300.	2.8	373
5	Standardized methods for the production of high specific-activity zirconium-89. Nuclear Medicine and Biology, 2009, 36, 729-739.	0.3	369
6	Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nuclear Medicine and Biology, 1996, 23, 957-980.	0.3	361
7	In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 844-850.	3 . 3	358
8	PET imaging with 89Zr: From radiochemistry to the clinic. Nuclear Medicine and Biology, 2013, 40, 3-14.	0.3	338
9	Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: Relationship to therapeutic response—a preliminary report. International Journal of Radiation Oncology Biology Physics, 2003, 55, 1233-1238.	0.4	324
10	Imaging oxygenation of human tumours. European Radiology, 2007, 17, 861-872.	2.3	304
11	Cerenkov Luminescence Imaging of Medical Isotopes. Journal of Nuclear Medicine, 2010, 51, 1123-1130.	2.8	279
12	PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer. Science Translational Medicine, 2015, 7, 283ra51.	5. 8	276
13	Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Translational Medicine, 2015, 7, 274ra17.	5.8	257
14	Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. Journal of Biological Inorganic Chemistry, 2002, 7, 249-259.	1.1	248
15	A Pretargeted PET Imaging Strategy Based on Bioorthogonal Diels–Alder Click Chemistry. Journal of Nuclear Medicine, 2013, 54, 1389-1396.	2.8	247
16	Metal complexes as diagnostic tools. Coordination Chemistry Reviews, 1999, 184, 3-66.	9.5	246
17	Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nature Chemical Biology, 2011, 7, 818-826.	3.9	240
18	Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. Journal of Nuclear Medicine, 1999, 40, 177-83.	2.8	236

#	Article	IF	CITATIONS
19	The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature, 2016, 538, 397-401.	13.7	233
20	Assessing Tumor Hypoxia in Cervical Cancer by PET with ⁶⁰ Cu-Labeled Diacetyl-Bis(<i>N</i> ⁴ -Methylthiosemicarbazone). Journal of Nuclear Medicine, 2008, 49, 201-205.	2.8	221
21	Cu–ATSM: A radiopharmaceutical for the PET imaging of hypoxia. Dalton Transactions, 2007, , 4893.	1.6	213
22	64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. Journal of Nuclear Medicine, 2001, 42, 213-21.	2.8	203
23	Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncology, The, 2018, 19, 1040-1050.	5.1	201
24	Click Chemistry and Radiochemistry: The First 10 Years. Bioconjugate Chemistry, 2016, 27, 2791-2807.	1.8	197
25	Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): An agent for radiotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1206-1211.	3.3	192
26	Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: Comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. International Journal of Radiation Oncology Biology Physics,	0.4	183
27	2005, 61, 1493-1502. An Imaging Comparison of ⁶⁴ Cu-ATSM and ⁶⁰ Cu-ATSM in Cancer of the Uterine Cervix. Journal of Nuclear Medicine, 2008, 49, 1177-1182.	2.8	178
28	First-in-Humans Imaging with ⁸⁹ Zr-Df-IAB22M2C Anti-CD8 Minibody in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting. Journal of Nuclear Medicine, 2020, 61, 512-519.	2.8	170
29	A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Transactions, 2011, 40, 6168.	1.6	169
30	Small animal imaging. European Journal of Cancer, 2002, 38, 2173-2188.	1.3	168
31	Role of Metalation in the Topoisomerase IIÎ \pm Inhibition and Antiproliferation Activity of a Series of Î \pm -Heterocyclic-N ⁴ -Substituted Thiosemicarbazones and Their Cu(II) Complexes. Journal of Medicinal Chemistry, 2011, 54, 2391-2398.	2.9	168
32	CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes and Development, 2014, 28, 1800-1814.	2.7	167
33	A Phase I/II Study for Analytic Validation of 89Zr-J591 ImmunoPET as a Molecular Imaging Agent for Metastatic Prostate Cancer. Clinical Cancer Research, 2015, 21, 5277-5285.	3.2	163
34	A Novel Technology for the Imaging of Acidic Prostate Tumors by Positron Emission Tomography. Cancer Research, 2009, 69, 4510-4516.	0.4	154
35	1- ¹¹ C-Acetate as a PET Radiopharmaceutical for Imaging Fatty Acid Synthase Expression in Prostate Cancer. Journal of Nuclear Medicine, 2008, 49, 327-334.	2.8	152
36	Tumor Hypoxia Detected by Positron Emission Tomography with 60Cu-ATSM as a Predictor of Response and Survival in Patients Undergoing Neoadjuvant Chemoradiotherapy for Rectal Carcinoma: A Pilot Study. Diseases of the Colon and Rectum, 2008, 51, 1641-1648.	0.7	151

#	Article	IF	CITATIONS
37	Radiotheranostics: a roadmap for future development. Lancet Oncology, The, 2020, 21, e146-e156.	5.1	151
38	HER2-Mediated Internalization of Cytotoxic Agents in <i>ERBB2</i> Amplified or Mutant Lung Cancers. Cancer Discovery, 2020, 10, 674-687.	7.7	149
39	Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using ⁸⁹ Zr-Trastuzumab PET/CT. Journal of Nuclear Medicine, 2016, 57, 1523-1528.	2.8	146
40	PET Imaging of Tumor-Associated Macrophages with ⁸⁹ Zr-Labeled High-Density Lipoprotein Nanoparticles. Journal of Nuclear Medicine, 2015, 56, 1272-1277.	2.8	145
41	Magnitude of Enhanced Permeability and Retention Effect in Tumors with Different Phenotypes: ⁸⁹ Zr-Albumin as a Model System. Journal of Nuclear Medicine, 2011, 52, 625-633.	2.8	144
42	Alternative Chelator for ⁸⁹ Zr Radiopharmaceuticals: Radiolabeling and Evaluation of 3,4,3-(LI-1,2-HOPO). Journal of Medicinal Chemistry, 2014, 57, 4849-4860.	2.9	143
43	Modular Strategy for the Construction of Radiometalated Antibodies for Positron Emission Tomography Based on Inverse Electron Demand Diels–Alder Click Chemistry. Bioconjugate Chemistry, 2011, 22, 2048-2059.	1.8	142
44	High purity production and potential applications of copper-60 and copper-61. Nuclear Medicine and Biology, 1999, 26, 351-358.	0.3	140
45	Multiplexed imaging for diagnosis and therapy. Nature Biomedical Engineering, 2017, 1, 697-713.	11.6	133
46	Tumor uptake of copper-diacetyl-bis ($N(4)$ -methylthiosemicarbazone): effect of changes in tissue oxygenation. Journal of Nuclear Medicine, 2001, 42, 655-61.	2.8	133
47	α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studiesâ€"Part 1. Journal of Nuclear Medicine, 2018, 59, 878-884.	2.8	131
48	89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 2093-2105.	3.3	130
49	Medical imaging and nuclear medicine: a Lancet Oncology Commission. Lancet Oncology, The, 2021, 22, e136-e172.	5.1	129
50	¹⁸ F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels–Alder Click Chemistry. Bioconjugate Chemistry, 2016, 27, 298-301.	1.8	127
51	Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent Cu-diacetyl-bis(N) Tj ETQq1 1 C	.784314 r 1.2	gBT/Overlo
52	Unconventional Nuclides for Radiopharmaceuticals. Molecular Imaging, 2010, 9, 7290.2010.00008.	0.7	126
53	First-in-Human Human Epidermal Growth Factor Receptor 2–Targeted Imaging Using ⁸⁹ Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer. Journal of Nuclear Medicine, 2018, 59, 900-906.	2.8	126
54	Imaging of Melanoma Using64Cuâ^' and86Yâ^'DOTAâ^'ReCCMSH(Arg11), a Cyclized Peptide Analogue of α-MSH. Journal of Medicinal Chemistry, 2005, 48, 2985-2992.	2.9	124

#	Article	IF	CITATIONS
55	Enzyme-Mediated Methodology for the Site-Specific Radiolabeling of Antibodies Based on Catalyst-Free Click Chemistry. Bioconjugate Chemistry, 2013, 24, 1057-1067.	1.8	123
56	Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer. Science Signaling, 2014, 7, ra29.	1.6	123
57	Measuring the Pharmacodynamic Effects of a Novel Hsp90 Inhibitor on HER2/neu Expression in Mice Using 89Zr-DFO-Trastuzumab. PLoS ONE, 2010, 5, e8859.	1.1	121
58	Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. International Journal of Nanomedicine, 2010, 5, 783.	3.3	117
59	⁸⁹ Zr-Labeled Dextran Nanoparticles Allow in Vivo Macrophage Imaging. Bioconjugate Chemistry, 2011, 22, 2383-2389.	1.8	116
60	First-in-Human Imaging with ⁸⁹ Zr-Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. Journal of Nuclear Medicine, 2016, 57, 1858-1864.	2.8	116
61	<i>EGFR</i> and <i>MET</i> Amplifications Determine Response to HER2 Inhibition in <i>ERBB2</i> Amplified Esophagogastric Cancer. Cancer Discovery, 2019, 9, 199-209.	7.7	115
62	Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nuclear Medicine and Biology, 2003, 30, 725-731.	0.3	113
63	The Growing Impact of Bioorthogonal Click Chemistry on the Development of Radiopharmaceuticals. Journal of Nuclear Medicine, 2013, 54, 829-832.	2.8	108
64	Measurement of input functions in rodents: challenges and solutions. Nuclear Medicine and Biology, 2005, 32, 679-685.	0.3	107
65	Androgen Receptor Upregulation Mediates Radioresistance after Ionizing Radiation. Cancer Research, 2015, 75, 4688-4696.	0.4	105
66	<i>p</i> -SCN-Bn-HOPO: A Superior Bifunctional Chelator for ⁸⁹ Zr ImmunoPET. Bioconjugate Chemistry, 2015, 26, 2579-2591.	1.8	104
67	Comparison of Four64Cu-Labeled Somatostatin Analogues in Vitro and in a Tumor-Bearing Rat Model: Evaluation of New Derivatives for Positron Emission Tomography Imaging and Targeted Radiotherapy‗. Journal of Medicinal Chemistry, 1999, 42, 1341-1347.	2.9	99
68	Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM. Nuclear Medicine and Biology, 2005, 32, 623-630.	0.3	98
69	Pharmacokinetics, Biodistribution, and Radiation Dosimetry for ⁸⁹ Zr-Trastuzumab in Patients with Esophagogastric Cancer. Journal of Nuclear Medicine, 2018, 59, 161-166.	2.8	96
70	Biodistribution and Dosimetry of ¹⁸ F-Meta-Fluorobenzylguanidine: A First-in-Human PET/CT Imaging Study of Patients with Neuroendocrine Malignancies. Journal of Nuclear Medicine, 2018, 59, 147-153.	2.8	96
71	Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 788-792.	3.3	94
72	Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nature Communications, 2016, 7, 11838.	5.8	94

#	Article	IF	CITATIONS
73	Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nuclear Medicine and Biology, 2005, 32, 21-28.	0.3	93
74	The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology. Seminars in Nuclear Medicine, 2011, 41, 265-282.	2.5	93
75	Positron Emission Tomography/Computed Tomography–Based Assessments of Androgen Receptor Expression and Glycolytic Activity as a Prognostic Biomarker for Metastatic Castration-Resistant Prostate Cancer. JAMA Oncology, 2018, 4, 217.	3.4	93
76	Tim-4+ cavity-resident macrophages impair anti-tumor CD8+ TÂcell immunity. Cancer Cell, 2021, 39, 973-988.e9.	7.7	93
77	Radiopharmaceuticals in Preclinical and Clinical Development for Monitoring of Therapy with PET. Journal of Nuclear Medicine, 2009, 50, 106S-121S.	2.8	92
78	Radiotheranostics in oncology: current challenges and emerging opportunities. Nature Reviews Clinical Oncology, 2022, 19, 534-550.	12.5	92
79	Noninvasive Interrogation of DLL3 Expression in Metastatic Small Cell Lung Cancer. Cancer Research, 2017, 77, 3931-3941.	0.4	91
80	Applications of pHLIP Technology for Cancer Imaging and Therapy. Trends in Biotechnology, 2017, 35, 653-664.	4.9	90
81	In vitro and in vivo evaluation of 64Cu-TETA-Tyr3-octreotate. a new somatostatin analog with improved target tissue uptake. Nuclear Medicine and Biology, 1999, 26, 267-273.	0.3	88
82	Fatty Acid Synthase Is a Key Target in Multiple Essential Tumor Functions of Prostate Cancer: Uptake of Radiolabeled Acetate as a Predictor of the Targeted Therapy Outcome. PLoS ONE, 2013, 8, e64570.	1.1	88
83	Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics. Molecular Pharmaceutics, 2015, 12, 3575-3587.	2.3	88
84	64Cu-Labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. Nuclear Medicine and Biology, 2009, 36, 277-285.	0.3	87
85	Monitoring Afatinib Treatment in HER2-Positive Gastric Cancer with 18F-FDG and 89Zr-Trastuzumab PET. Journal of Nuclear Medicine, 2013, 54, 936-943.	2.8	85
86	A Modular Labeling Strategy for In Vivo PET and Near-Infrared Fluorescence Imaging of Nanoparticle Tumor Targeting. Journal of Nuclear Medicine, 2014, 55, 1706-1711.	2.8	85
87	Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15850-15855.	3.3	85
88	Radiotherapy, toxicity and dosimetry of copper-64-TETA-octreotide in tumor-bearing rats. Journal of Nuclear Medicine, 1998, 39, 1944-51.	2.8	85
89	Annotating MYC status with 89Zr-transferrin imaging. Nature Medicine, 2012, 18, 1586-1591.	15.2	83
90	Autoradiographic and small-animal PET comparisons between 18F-FMISO, 18F-FDG, 18F-FLT and the hypoxic selective 64Cu-ATSM in a rodent model of cancer. Nuclear Medicine and Biology, 2008, 35, 713-720.	0.3	82

#	Article	IF	Citations
91	H ₄ octapa-Trastuzumab: Versatile Acyclic Chelate System for ¹¹¹ In and ¹⁷⁷ Lu Imaging and Therapy. Journal of the American Chemical Society, 2013, 135, 12707-12721.	6.6	82
92	Preparation of high specific activity 86Y using a small biomedical cyclotron. Nuclear Medicine and Biology, 2005, 32, 891-897.	0.3	81
93	89Zr-Labeled Paramagnetic Octreotide-Liposomes for PET-MR Imaging of Cancer. Pharmaceutical Research, 2013, 30, 878-888.	1.7	81
94	Distant metastasis in p16-positive oropharyngeal squamous cell carcinoma: A critical analysis of patterns and outcomes. Oral Oncology, 2014, 50, 45-51.	0.8	81
95	89Zr-Trastuzumab PET/CT for Detection of Human Epidermal Growth Factor Receptor 2–Positive Metastases in Patients With Human Epidermal Growth Factor Receptor 2–Negative Primary Breast Cancer. Clinical Nuclear Medicine, 2017, 42, 912-917.	0.7	81
96	Pretargeted Immuno-PET of Pancreatic Cancer: Overcoming Circulating Antigen and Internalized Antibody to Reduce Radiation Doses. Journal of Nuclear Medicine, 2016, 57, 453-459.	2.8	80
97	In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of ¹⁸ F-(2 <i>S</i> ,4 <i>R</i>)-4-Fluoroglutamine. Radiology, 2018, 287, 667-675.	3.6	80
98	Establishment of the <i>In Vivo</i> Efficacy of Pretargeted Radioimmunotherapy Utilizing Inverse Electron Demand Diels-Alder Click Chemistry. Molecular Cancer Therapeutics, 2017, 16, 124-133.	1.9	79
99	InÂVivo PET Imaging of HDL in MultipleÂAtherosclerosisÂModels. JACC: Cardiovascular Imaging, 2016, 9, 950-961.	2.3	78
100	Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nature Communications, 2018, 9, 5137.	5.8	78
101	In Vivo Biodistribution, PET Imaging, and Tumor Accumulation of ⟨sup⟩86⟨/sup⟩Y- and ⟨sup⟩111⟨/sup⟩In-Antimindin/RG-1, Engineered Antibody Fragments in LNCaP Tumor–Bearing Nude Mice. Journal of Nuclear Medicine, 2009, 50, 435-443.	2.8	76
102	Underscoring the Influence of Inorganic Chemistry on Nuclear Imaging with Radiometals. Inorganic Chemistry, 2014, 53, 1880-1899.	1.9	75
103	Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 764-770.	3.3	74
104	¹⁸ F-Labeled-Bioorthogonal Liposomes for <i>In Vivo</i> Targeting. Bioconjugate Chemistry, 2013, 24, 1784-1789.	1.8	74
105	A Prospective Pilot Study of ⁸⁹ Zr-J591/Prostate Specific Membrane Antigen Positron Emission Tomography in Men with Localized Prostate Cancer Undergoing Radical Prostatectomy. Journal of Urology, 2014, 191, 1439-1445.	0.2	7 3
106	CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging. Radiology, 2020, 295, 606-615.	3.6	73
107	In Vitro and In Vivo Evaluation of Bifunctional Bisthiosemicarbazone ⁶⁴ Cu-Complexes for the Positron Emission Tomography Imaging of Hypoxia. Journal of Medicinal Chemistry, 2008, 51, 2985-2991.	2.9	72
108	α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studiesâ€"Part 2. Journal of Nuclear Medicine, 2018, 59, 1020-1027.	2.8	72

#	Article	lF	CITATIONS
109	Radiotherapy and dosimetry of 64Cu-TETA-Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model. Clinical Cancer Research, 1999, 5, 3608-16.	3.2	71
110	DOTAâ^'d-Tyr1-Octreotate:Â A Somatostatin Analogue for Labeling with Metal and Halogen Radionuclides for Cancer Imaging and Therapy. Bioconjugate Chemistry, 2002, 13, 721-728.	1.8	69
111	Fc-Mediated Anomalous Biodistribution of Therapeutic Antibodies in Immunodeficient Mouse Models. Cancer Research, 2018, 78, 1820-1832.	0.4	69
112	Phase I Trial of Well-Differentiated Neuroendocrine Tumors (NETs) with Radiolabeled Somatostatin Antagonist 177Lu-Satoreotide Tetraxetan. Clinical Cancer Research, 2019, 25, 6939-6947.	3.2	69
113	Targeted Brain Tumor Radiotherapy Using an Auger Emitter. Clinical Cancer Research, 2020, 26, 2871-2881.	3.2	69
114	Head-to-Head Evaluation of ¹⁸ F-FES and ¹⁸ F-FDG PET/CT in Metastatic Invasive Lobular Breast Cancer. Journal of Nuclear Medicine, 2021, 62, 326-331.	2.8	69
115	Delineation of hypoxia in canine myocardium using PET and copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone). Journal of Nuclear Medicine, 2002, 43, 1557-69.	2.8	69
116	Investigation into 64Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents. Nuclear Medicine and Biology, 2005, 32, 147-156.	0.3	68
117	Imaging Androgen Receptor Signaling with a Radiotracer Targeting Free Prostate-Specific Antigen. Cancer Discovery, 2012, 2, 320-327.	7.7	68
118	Development of a minimal saponin vaccine adjuvant based on QS-21. Nature Chemistry, 2014, 6, 635-643.	6.6	68
119	Harnessing ⁶⁴ Cu/ ⁶⁷ Cu for a theranostic approach to pretargeted radioimmunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28316-28327.	3.3	67
120	The Future of Nuclear Medicine, Molecular Imaging, and Theranostics. Journal of Nuclear Medicine, 2020, 61, 263S-272S.	2.8	67
121	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	2.3	66
122	Positron-Emitting Isotopes Produced on Biomedical Cyclotrons. Current Medicinal Chemistry, 2005, 12, 807-818.	1.2	65
123	Molecular Imaging of Gastrin-Releasing Peptide Receptor-Positive Tumors in Mice Using64Cu-and86Y-DOTAâ^'(Pro1,Tyr4)-Bombesin(1â^'14). Bioconjugate Chemistry, 2007, 18, 724-730.	1.8	65
124	Noninvasive Imaging of PSMA in Prostate Tumors with ⁸⁹ Zr-Labeled huJ591 Engineered Antibody Fragments: The Faster Alternatives. Molecular Pharmaceutics, 2014, 11, 3965-3973.	2.3	65
125	Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 985-994.	3.3	65
126	NuMA Influences Higher Order Chromatin Organization in Human Mammary Epithelium. Molecular Biology of the Cell, 2007, 18, 348-361.	0.9	64

#	Article	IF	CITATIONS
127	Feasibility and Predictability of Perioperative PET and Estrogen Receptor Ligand in Patients with Invasive Breast Cancer. Journal of Nuclear Medicine, 2013, 54, 1697-1702.	2.8	64
128	Chemoenzymatic Strategy for the Synthesis of Site-Specifically Labeled Immunoconjugates for Multimodal PET and Optical Imaging. Bioconjugate Chemistry, 2014, 25, 2123-2128.	1.8	64
129	Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics, 2020, 10, 567-584.	4.6	63
130	Imaging the Norepinephrine Transporter in Neuroblastoma: A Comparison of [18F]-MFBG and 123I-MIBG. Clinical Cancer Research, 2014, 20, 2182-2191.	3.2	61
131	Efficient ¹⁸ F-Labeling of Large 37-Amino-Acid pHLIP Peptide Analogues and Their Biological Evaluation. Bioconjugate Chemistry, 2012, 23, 1557-1566.	1.8	60
132	Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate. Bioconjugate Chemistry, 2016, 27, 1789-1795.	1.8	60
133	Initial Results of a Prospective Clinical Trial of ¹⁸ F-Fluciclovine PET/CT in Newly Diagnosed Invasive Ductal and Invasive Lobular Breast Cancers. Journal of Nuclear Medicine, 2016, 57, 1350-1356.	2.8	60
134	The Bioconjugation and Radiosynthesis of ⁸⁹ Zr-DFO-labeled Antibodies. Journal of Visualized Experiments, 2015, , .	0.2	60
135	Applying PET to Broaden the Diagnostic Utility of the Clinically Validated CA19.9 Serum Biomarker for Oncology. Journal of Nuclear Medicine, 2013, 54, 1876-1882.	2.8	58
136	Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models. EJNMMI Research, 2017, 7, 95.	1.1	58
137	Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Molecular Imaging, 2011, 10, 177-86, 1-3.	0.7	58
138	H6phospa-trastuzumab: bifunctional methylenephosphonate-based chelator with89Zr,111In and177Lu. Dalton Transactions, 2014, 43, 119-131.	1.6	57
139	Targeting Breast Tumors with pH (Low) Insertion Peptides. Molecular Pharmaceutics, 2014, 11, 2896-2905.	2.3	57
140	Synthesis and biologic evaluation of 64Cu-labeled rhenium-cyclized alpha-MSH peptide analog using a cross-bridged cyclam chelator. Journal of Nuclear Medicine, 2007, 48, 64-72.	2.8	57
141	Targeting the Internal Epitope of Prostate-Specific Membrane Antigen with ⁸⁹ Zr-7E11 Immuno-PET. Journal of Nuclear Medicine, 2011, 52, 1608-1615.	2.8	56
142	Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2009, 53, 193-200.	0.4	56
143	Intra-tumoral distribution of 64Cu-ATSM: a comparison study with FDG. Nuclear Medicine and Biology, 2003, 30, 529-534.	0.3	55
144	Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2019, 25, 868-880.	3.2	55

#	Article	IF	CITATIONS
145	Melanoma imaging using 111In-, 86Y- and 68Ga-labeled CHX-A″-Re(Arg11)CCMSH. Nuclear Medicine and Biology, 2009, 36, 345-354.	0.3	53
146	Intraoperative Imaging of Positron Emission Tomographic Radiotracers Using Cerenkov Luminescence Emissions. Molecular Imaging, 2011, 10, 7290.2010.00047.	0.7	53
147	A Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer. Theranostics, 2016, 6, 2267-2277.	4.6	53
148	H ₂ azapa: a Versatile Acyclic Multifunctional Chelator for ⁶⁷ Ga, ⁶⁴ Cu, ¹¹¹ In, and ¹⁷⁷ Lu. Inorganic Chemistry, 2012, 51, 12575-12589.	1.9	52
149	PET Imaging of Extracellular pH in Tumors with ⁶⁴ Cu- and ¹⁸ F-Labeled pHLIP Peptides: A Structure–Activity Optimization Study. Bioconjugate Chemistry, 2016, 27, 2014-2023.	1.8	52
150	Exploring Structural Parameters for Pretargeting Radioligand Optimization. Journal of Medicinal Chemistry, 2017, 60, 8201-8217.	2.9	52
151	Unconventional nuclides for radiopharmaceuticals. Molecular Imaging, 2010, 9, 1-20.	0.7	52
152	Toxicity and dosimetry of 177Lu-DOTA-Y3-octreotate in a rat model. International Journal of Cancer, 2001, 94, 873-877.	2.3	51
153	Examining the relationship between Cu-ATSM hypoxia selectivity and fatty acid synthase expression in human prostate cancer cell lines. Nuclear Medicine and Biology, 2008, 35, 273-279.	0.3	51
154	PARP-1–Targeted Radiotherapy in Mouse Models of Glioblastoma. Journal of Nuclear Medicine, 2018, 59, 1225-1233.	2.8	51
155	Nitroimidazole conjugates of bis(thiosemicarbazonato)64Cu(II) – Potential combination agents for the PET imaging of hypoxia. Journal of Inorganic Biochemistry, 2010, 104, 126-135.	1.5	50
156	Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 322-332.	3.3	50
157	The Impact of Positron Range on PET Resolution, Evaluated with Phantoms and PHITS Monte Carlo Simulations for Conventional and Non-conventional Radionuclides. Molecular Imaging and Biology, 2020, 22, 73-84.	1.3	50
158	Human Epidermal Growth Factor Receptor 2-Targeted PET/Single- Photon Emission Computed Tomography Imaging of Breast Cancer. PET Clinics, 2017, 12, 269-288.	1.5	49
159	Validation of a Novel CHX-A Â  Derivative Suitable for Peptide Conjugation: Small Animal PET/CT Imaging Using Yttrium-86-CHX-A Â -Octreotide. Journal of Medicinal Chemistry, 2006, 49, 4297-4304.	2.9	48
160	Gallium-68-labeled DOTA-rhenium-cyclized α-melanocyte-stimulating hormone analog for imaging of malignant melanoma. Nuclear Medicine and Biology, 2007, 34, 945-953.	0.3	47
161	Prospective Clinical Trial of ¹⁸ F-Fluciclovine PET/CT for Determining the Response to Neoadjuvant Therapy in Invasive Ductal and Invasive Lobular Breast Cancers. Journal of Nuclear Medicine, 2017, 58, 1037-1042.	2.8	47
162	Retooling a Blood-Based Biomarker: Phase I Assessment of the High-Affinity CA19-9 Antibody HuMab-5B1 for Immuno-PET Imaging of Pancreatic Cancer. Clinical Cancer Research, 2019, 25, 7014-7023.	3.2	47

#	Article	IF	CITATIONS
163	In vivo skeletal imaging of 18F-fluoride with positron emission tomography reveals damage- and time-dependent responses to fatigue loading in the rat ulna. Bone, 2006, 39, 229-236.	1.4	46
164	Synthesis, in vitro and in vivo characterization of 64Cu(I) complexes derived from hydrophilic tris(hydroxymethyl)phosphane and 1,3,5-triaza-7-phosphaadamantane ligands. Journal of Biological Inorganic Chemistry, 2008, 13, 307-315.	1.1	46
165	A phase II study of radioimmunotherapy with intraventricular ¹³¹ lâ€3F8 for medulloblastoma. Pediatric Blood and Cancer, 2018, 65, e26754.	0.8	46
166	Enhancing targeted radiotherapy by copper(II)diacetyl- bis(N4-methylthiosemicarbazone) using 2-deoxy-D-glucose. Cancer Research, 2003, 63, 5496-504.	0.4	46
167	Identification of a Novel Prostate Tumor Target, Mindin/RG-1, for Antibody-Based Radiotherapy of Prostate Cancer. Cancer Research, 2005, 65, 8397-8405.	0.4	44
168	Intraoperative Imaging of Positron Emission Tomographic Radiotracers Using Cerenkov Luminescence Emissions. Molecular Imaging, 2011, 10, 7290.2010.00047.	0.7	44
169	Challenges of Pancreatic Cancer. Cancer Journal (Sudbury, Mass), 2015, 21, 188-193.	1.0	44
170	Biodistribution and radiation dose estimates for 68Ga-DOTA-JR11 in patients with metastatic neuroendocrine tumors. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 677-685.	3.3	44
171	Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem, 2021, 16, 2909-2941.	1.6	44
172	Clickable bifunctional radiometal chelates for peptide labeling. Chemical Communications, 2010, 46, 1706.	2.2	43
173	Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multi-drug resistance in tumours by PET. European Journal of Nuclear Medicine and Molecular Imaging, 2000, 27, 638-646.	3.3	40
174	Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7254-7259.	3.3	40
175	Paradigms for Precision Medicine in Epichaperome Cancer Therapy. Cancer Cell, 2019, 36, 559-573.e7.	7.7	40
176	B7H3-Directed Intraperitoneal Radioimmunotherapy With Radioiodinated Omburtamab for Desmoplastic Small Round Cell Tumor and Other Peritoneal Tumors: Results of a Phase I Study. Journal of Clinical Oncology, 2020, 38, 4283-4291.	0.8	40
177	Identification of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer by Using HER2-targeted ⁸⁹ Zr-Pertuzumab PET/CT. Radiology, 2020, 296, 370-378.	3.6	40
178	What a Difference a Carbon Makes: H ₄ octapa vs H ₄ C3octapa, Ligands for In-111 and Lu-177 Radiochemistry. Inorganic Chemistry, 2014, 53, 10412-10431.	1.9	38
179	IN VIVO IMAGING IN A MURINE MODEL OF GLIOBLASTOMA. Neurosurgery, 2007, 60, 360-371.	0.6	37
180	Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. Nature Communications, $2018, 9, 1629$.	5.8	37

#	Article	IF	Citations
181	Click-Mediated Pretargeted Radioimmunotherapy of Colorectal Carcinoma. Molecular Pharmaceutics, 2018, 15, 1729-1734.	2.3	36
182	Safety and Feasibility of PARP1/2 Imaging with 18F-PARPi in Patients with Head and Neck Cancer. Clinical Cancer Research, 2020, 26, 3110-3116.	3.2	36
183	Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceuticals labeled with three Cu radionuclides. Nuclear Medicine and Biology, 2006, 33, 217-226.	0.3	35
184	Bioorthogonal Masking of Circulating Antibody–TCO Groups Using Tetrazine-Functionalized Dextran Polymers. Bioconjugate Chemistry, 2018, 29, 538-545.	1.8	35
185	Evaluation of Hypoxia With Copper-Labeled Diacetyl-bis(N-Methylthiosemicarbazone). Seminars in Nuclear Medicine, 2015, 45, 177-185.	2.5	34
186	A rapid bead-based radioligand binding assay for the determination of target-binding fraction and quality control of radiopharmaceuticals. Nuclear Medicine and Biology, 2019, 71, 32-38.	0.3	34
187	Molecular imaging: The application of small animal positron emission tomography. Journal of Cellular Biochemistry, 2002, 87, 110-115.	1.2	33
188	Imaging Tumor Burden in the Brain with ⁸⁹ Zr-Transferrin. Journal of Nuclear Medicine, 2013, 54, 90-95.	2.8	33
189	⁸⁹ Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection. Journal of Nuclear Medicine, 2017, 58, 1386-1394.	2.8	33
190	The inverse electron-demand Diels–Alder reaction as a new methodology for the synthesis of 225Ac-labelled radioimmunoconjugates. Chemical Communications, 2018, 54, 2599-2602.	2.2	33
191	Improved synthesis of 2′-deoxy-2′-[18F]-fluoro-1-β-d-arabinofuranosyl-5-iodouracil ([18F]-FIAU). Nuclear Medicine and Biology, 2010, 37, 439-442.	0.3	32
192	Antibodies Against Specific MUC16 Glycosylation Sites Inhibit Ovarian Cancer Growth. ACS Chemical Biology, 2017, 12, 2085-2096.	1.6	32
193	Preclinical ⁸⁹ Zr Immuno-PET of High-Grade Serous Ovarian Cancer and Lymph Node Metastasis. Journal of Nuclear Medicine, 2016, 57, 771-776.	2.8	31
194	Preloading with Unlabeled CA19.9 Targeted Human Monoclonal Antibody Leads to Improved PET Imaging with ⁸⁹ Zr-5B1. Molecular Pharmaceutics, 2017, 14, 908-915.	2.3	31
195	Noninvasive Measurement of mTORC1 Signaling with 89Zr-Transferrin. Clinical Cancer Research, 2017, 23, 3045-3052.	3.2	31
196	Noninvasive ⁸⁹ Zr-Transferrin PET Shows Improved Tumor Targeting Compared with ¹⁸ F-FDG PET in MYC-Overexpressing Human Triple-Negative Breast Cancer. Journal of Nuclear Medicine, 2018, 59, 51-57.	2.8	31
197	The Influence of Glycans-Specific Bioconjugation on the Fcl³RI Binding and <i>In vivo</i> Performance of ⁸⁹ Zr-DFO-Pertuzumab. Theranostics, 2020, 10, 1746-1757.	4.6	31
198	iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy. Cancer Research, 2020, 80, 1681-1692.	0.4	31

#	Article	IF	Citations
199	Copper(I) bis(diphosphine) complexes as a basis for radiopharmaceuticals for positron emission tomography and targeted radiotherapy. Chemical Communications, 1996, , 1093.	2.2	30
200	Biodistribution and Dosimetry of Intraventricularly Administered ¹²⁴ I-Omburtamab in Patients with Metastatic Leptomeningeal Tumors. Journal of Nuclear Medicine, 2019, 60, 1794-1801.	2.8	29
201	Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7441-E7449.	3.3	28
202	A Tat Fusion Protein–Based Tumor Vaccine for Breast Cancer. Annals of Surgical Oncology, 2005, 12, 517-525.	0.7	27
203	An Anatomical Study of Tibial Metaphyseal/Diaphyseal Mismatch During Revision Total Knee Arthroplasty. Journal of Arthroplasty, 2007, 22, 241-244.	1.5	27
204	Diagnostic and prognostic value of ambulatory ECG (Holter) monitoring in patients with coronary heart disease: a review. Journal of Thrombosis and Thrombolysis, 2007, 23, 135-145.	1.0	27
205	Temporal Modulation of HER2 Membrane Availability Increases Pertuzumab Uptake and Pretargeted Molecular Imaging of Gastric Tumors. Journal of Nuclear Medicine, 2019, 60, 1569-1578.	2.8	27
206	PARaDIM: A PHITS-Based Monte Carlo Tool for Internal Dosimetry with Tetrahedral Mesh Computational Phantoms. Journal of Nuclear Medicine, 2019, 60, 1802-1811.	2.8	27
207	lmaging of human epidermal growth factor receptors for patient selection and response monitoring – From PET imaging and beyond. Cancer Letters, 2018, 419, 139-151.	3.2	26
208	A Systematic Evaluation of Antibody Modification and ⁸⁹ Zr-Radiolabeling for Optimized Immuno-PET. Bioconjugate Chemistry, 2021, 32, 1177-1191.	1.8	26
209	A simple strategy to reduce the salivary gland and kidney uptake of PSMA-targeting small molecule radiopharmaceuticals. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2642-2651.	3.3	26
210	Copper-64-pyruvaldehyde-bis(N(4)-methylthiosemicarbazone) for the prevention of tumor growth at wound sites following laparoscopic surgery: monitoring therapy response with microPET and magnetic resonance imaging. Cancer Research, 2002, 62, 445-9.	0.4	26
211	Annotating STEAP1 Regulation in Prostate Cancer with 89Zr Immuno-PET. Journal of Nuclear Medicine, 2014, 55, 2045-2049.	2.8	25
212	A comparative evaluation of the chelators H 4 octapa and CHX-A″-DTPA with the therapeutic radiometal 90 Y. Nuclear Medicine and Biology, 2016, 43, 566-576.	0.3	25
213	An ⁸⁹ Zr-HDL PET Tracer Monitors Response to a CSF1R Inhibitor. Journal of Nuclear Medicine, 2020, 61, 433-436.	2.8	25
214	Comparative Dosimetry of Copper-64 and Yttrium-90-Labeled Somatostatin Analogs in a Tumor-Bearing Rat Model. Cancer Biotherapy and Radiopharmaceuticals, 2000, 15, 593-604.	0.7	24
215	Building Blocks for the Construction of Bioorthogonally Reactive Peptides via Solidâ€Phase Peptide Synthesis. ChemistryOpen, 2014, 3, 48-53.	0.9	24
216	Preclinical optimization of antibodyâ€based radiopharmaceuticals for cancer imaging and radionuclide therapyâ€"Model, vector, and radionuclide selection. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 611-635.	0.5	24

#	Article	IF	CITATIONS
217	Trastuzumab gold-conjugates: synthetic approach and <i>in vitro</i> evaluation of anticancer activities in breast cancer cell lines. Chemical Communications, 2019, 55, 1394-1397.	2.2	24
218	Internalization of secreted antigen–targeted antibodies by the neonatal Fc receptor for precision imaging of the androgen receptor axis. Science Translational Medicine, 2016, 8, 367ra167.	5.8	23
219	ImmunoPET Predicts Response to Met-targeted Radioligand Therapy in Models of Pancreatic Cancer Resistant to Met Kinase Inhibitors. Theranostics, 2020, 10, 151-165.	4.6	23
220	Effect of ligand and solvent on chloride ion coordination in anti-tumour copper(I) diphosphine complexes: Synthesis of [Cu(dppe)2]Cl and analogous complexes (dppe =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6	6 1⊅ Td (1,	2912is(diphen
221	Low incidence of radionecrosis in children treated with conventional radiation therapy and intrathecal radioimmunotherapy. Journal of Neuro-Oncology, 2015, 123, 245-249.	1.4	22
222	Current status and future challenges for molecular imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170023.	1.6	22
223	Tumor-Specific Zr-89 Immuno-PET Imaging in a Human Bladder Cancer Model. Molecular Imaging and Biology, 2018, 20, 808-815.	1.3	22
224	Multimodal Positron Emission Tomography Imaging to Quantify Uptake of ⁸⁹ Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjugate Chemistry, 2020, 31, 360-368.	1.8	22
225	64Cu-azabicyclo[3.2.2]nonane thiosemicarbazone complexes: radiopharmaceuticals for PET of topoisomerase II expression in tumors. Journal of Nuclear Medicine, 2006, 47, 2034-41.	2.8	22
226	Selective Imaging of VEGFR-1 and VEGFR-2 Using ⁸⁹ Zr-Labeled Single-Chain VEGF Mutants. Journal of Nuclear Medicine, 2016, 57, 1811-1816.	2.8	21
227	Clinical Potential of Human Epidermal Growth Factor Receptor 2 and Human Epidermal Growth Factor Receptor 3 Imaging in Breast Cancer. PET Clinics, 2018, 13, 423-435.	1.5	21
228	Harnessing Androgen Receptor Pathway Activation for Targeted Alpha Particle Radioimmunotherapy of Breast Cancer. Clinical Cancer Research, 2019, 25, 881-891.	3.2	21
229	Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chemical Science, 2020, 11, 3737-3744.	3.7	21
230	Imaging Tumor-Infiltrating Lymphocytes in Brain Tumors with [64Cu]Cu-NOTA-anti-CD8 PET. Clinical Cancer Research, 2021, 27, 1958-1966.	3.2	21
231	Molecular Imaging of Neuroendocrine Prostate Cancer by Targeting Delta-Like Ligand 3. Journal of Nuclear Medicine, 2022, 63, 1401-1407.	2.8	21
232	Diphosphine bifunctional chelators for low-valent metal ions. Crystal structures of the copper(I) complexes [CuClL12] and [CuL12][PF6] [L1â€=â€2,3-bis(diphenylphosphino)maleic anhydride]. Journal of the Chemical Society Dalton Transactions, 1997, , 855-862.	≥ 1.1	20
233	Utilization of metabolic, transport and receptor-mediated processes to deliver agents for cancer diagnosis. Advanced Drug Delivery Reviews, 1999, 37, 189-211.	6.6	20
234	Reproducibility and Repeatability of Semiquantitative ¹⁸ F-Fluorodihydrotestosterone Uptake Metrics in Castration-Resistant Prostate Cancer Metastases: A Prospective Multicenter Study. Journal of Nuclear Medicine, 2018, 59, 1516-1523.	2.8	20

#	Article	IF	CITATIONS
235	A High-Denticity Chelator Based on Desferrioxamine for Enhanced Coordination of Zirconium-89. Inorganic Chemistry, 2020, 59, 11715-11727.	1.9	20
236	Rhenium complex of a triply deprotonated chelated thiosemicarbazide and its conversion to a nitride complex via a hydrazide intermediate. Crystal structure of [ReCl2(NH)(NHNH2)(PPh3)2]. Journal of the Chemical Society Dalton Transactions, 1995, , 1357.	1.1	19
237	Toward the Optimization of Click-Mediated Pretargeted Radioimmunotherapy. Molecular Pharmaceutics, 2019, 16, 2259-2263.	2.3	19
238	HER2-Targeted PET Imaging and Therapy of Hyaluronan-Masked HER2-Overexpressing Breast Cancer. Molecular Pharmaceutics, 2020, 17, 327-337.	2.3	19
239	pHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Scientific Reports, 2020, 10, 18356.	1.6	19
240	Comparison of 68Ga-DOTA-JR11 PET/CT with dosimetric 177Lu-satoreotide tetraxetan (177Lu-DOTA-JR11) SPECT/CT in patients with metastatic neuroendocrine tumors undergoing peptide receptor radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 3047-3057.	3.3	19
241	Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nature Communications, 2021, 12, 4669.	5.8	19
242	Radioimmunotherapy Targeting Delta-like Ligand 3 in Small Cell Lung Cancer Exhibits Antitumor Efficacy with Low Toxicity. Clinical Cancer Research, 2022, 28, 1391-1401.	3.2	19
243	Radiopharmaceuticals for targeted radiotherapy of cancer. Expert Opinion on Therapeutic Patents, 2000, 10, 1057-1069.	2.4	18
244	The synthesis and evaluation of N1-(4-(2-[18F]-fluoroethyl)phenyl)-N8-hydroxyoctanediamide ([18F]-FESAHA), A PET radiotracer designed for the delineation of histone deacetylase expression in cancer. Nuclear Medicine and Biology, 2011, 38, 683-696.	0.3	18
245	Multinuclear NMR and MRI Reveal an Early Metabolic Response to mTOR Inhibition in Sarcoma. Cancer Research, 2017, 77, 3113-3120.	0.4	18
246	Acute Statin Treatment Improves Antibody Accumulation in EGFR- and PSMA-Expressing Tumors. Clinical Cancer Research, 2020, 26, 6215-6229.	3.2	18
247	First-in-Human Trial of Epichaperome-Targeted PET in Patients with Cancer. Clinical Cancer Research, 2020, 26, 5178-5187.	3.2	18
248	Radiometal-Labeled Somatostatin Analogs for Applications in Cancer Imaging and Therapy. Methods in Molecular Biology, 2007, 386, 227-240.	0.4	18
249	Radiosynthesis of the iodineâ€124 labeled Hsp90 inhibitor PUâ€H71. Journal of Labelled Compounds and Radiopharmaceuticals, 2016, 59, 129-132.	0.5	17
250	Molecular Imaging of Ovarian Cancer. Journal of Nuclear Medicine, 2016, 57, 827-833.	2.8	17
251	Imaging EGFR and HER3 through 89Zr-labeled MEHD7945A (Duligotuzumab). Scientific Reports, 2018, 8, 9043.	1.6	17
252	PET imaging of hypoxia. The Quarterly Journal of Nuclear Medicine: Official Publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), 2001, 45, 183-8.	0.5	17

#	Article	IF	Citations
253	Delta-like ligand $3\hat{a}\in\text{``targeted radioimmunotherapy}$ for neuroendocrine prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
254	Evaluation of a bromine-76-labeled progestin $16\hat{l}\pm$, $17\hat{l}\pm$ -dioxolane for breast tumor imaging and radiotherapy: in vivo biodistribution and metabolic stability studies. Nuclear Medicine and Biology, 2008, 35, 655-663.	0.3	16
255	Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Scientific Reports, 2019, 9, 8550.	1.6	16
256	Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nuclear Medicine and Biology, 2020, 84-85, 63-72.	0.3	16
257	Production of Non-standard PET Radionuclides and the Application of Radiopharmaceuticals Labeled with these Nuclides., 2007,, 159-181.		16
258	The preparation of rhenium(V) oxo and imido complexes with Et2NCSNHCOPh and Et2NCSBC(NH)Ph. The x-ray crystal structure of [ReOCl(PhCONCSNEt2)2]. Polyhedron, 1993, 12, 221-225.	1.0	15
259	Synthesis and characterization of the copper(ii) complexes of new N2S2-donor macrocyclic ligands: synthesis and in vivo evaluation of the 64Cu complexes. Dalton Transactions, 2009, , 177-184.	1.6	15
260	Comparison of Methods for Surface Modification of Barium Titanate Nanoparticles for Aqueous Dispersibility: Toward Biomedical Utilization of Perovskite Oxides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51135-51147.	4.0	15
261	Oncology-Inspired Treatment Options for COVID-19. Journal of Nuclear Medicine, 2020, 61, 1720-1723.	2.8	15
262	89Zr-PET imaging of DNA double-strand breaks for the early monitoring of response following \hat{l}_{\pm} - and \hat{l}^2 -particle radioimmunotherapy in a mouse model of pancreatic ductal adenocarcinoma. Theranostics, 2020, 10, 5802-5814.	4.6	15
263	ImmunoPET Imaging of Pancreatic Tumors with 89Zr-Labeled Gold Nanoparticle–Antibody Conjugates. Molecular Imaging and Biology, 2021, 23, 84-94.	1.3	15
264	Bromination from the Macroscopic Level to the Tracer Radiochemical Level:76Br Radiolabeling of Aromatic Compounds via Electrophilic Substitution. Bioconjugate Chemistry, 2009, 20, 808-816.	1.8	14
265	Copper-64 Radiopharmaceuticals for Oncologic Imaging. PET Clinics, 2009, 4, 49-67.	1.5	14
266	A PET Imaging Strategy for Interrogating Target Engagement and Oncogene Status in Pancreatic Cancer. Clinical Cancer Research, 2019, 25, 166-176.	3.2	14
267	Polyclonal antibodies to xenogeneic endothelial cells induce apoptosis and block support of tumor growth in mice. Vaccine, 2003, 21, 2667-2677.	1.7	13
268	Polyazamacrocycle Ligands Facilitate ⁸⁹ Zr Radiochemistry and Yield ⁸⁹ Zr Complexes with Remarkable Stability. Inorganic Chemistry, 2020, 59, 17473-17487.	1.9	13
269	Applications of nuclear-based imaging in gene and cell therapy: Probe considerations. Molecular Therapy - Oncolytics, 2021, 20, 447-458.	2.0	13
270	Synthesis and evaluation of an 18 F-labeled pyrimidine-pyridine amine for targeting CXCR4 receptors in gliomas. Nuclear Medicine and Biology, 2016, 43, 606-611.	0.3	12

#	Article	IF	Citations
271	Applying ⁸⁹ Zr-Transferrin To Study the Pharmacology of Inhibitors to BET Bromodomain Containing Proteins. Molecular Pharmaceutics, 2016, 13, 683-688.	2.3	12
272	Leveraging PET to image folate receptor \hat{l}_{\pm} therapy of an antibody-drug conjugate. EJNMMI Research, 2018, 8, 87.	1.1	12
273	Improved synthesis of the bifunctional chelator <i>p</i> SCN-Bn-HOPO. Organic and Biomolecular Chemistry, 2019, 17, 6866-6871.	1.5	12
274	Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer. Nuclear Medicine and Biology, 2020, 80-81, 1-12.	0.3	12
275	Demarcation of Sepsis-Induced Peripheral and Central Acidosis with pH (Low) Insertion Cycle Peptide. Journal of Nuclear Medicine, 2020, 61, 1361-1368.	2.8	12
276	Sandmeyer reaction repurposed for the site-selective, non-oxidizing radioiodination of fully-deprotected peptides: Studies on the endogenous opioid peptide \hat{l} ±-neoendorphin. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4347-4350.	1.0	11
277	ImmunoPET of Ovarian and Pancreatic Cancer with AR9.6, a Novel MUC16-Targeted Therapeutic Antibody. Clinical Cancer Research, 2022, 28, 948-959.	3.2	11
278	PET Imaging of Acidic Tumor Environment With 89Zr-labeled pHLIP Probes. Frontiers in Oncology, 2022, 12, .	1.3	11
279	An improved strategy for the synthesis of [18F]-labeled arabinofuranosyl nucleosides. Nuclear Medicine and Biology, 2012, 39, 1182-1188.	0.3	10
280	Dosimetry of 18F-Labeled Tyrosine Kinase Inhibitor SKI-249380, a Dasatinib-Tracer for PET Imaging. Molecular Imaging and Biology, 2012, 14, 25-31.	1.3	10
281	Fully-automated synthesis of $16\hat{l}^2$ - 18 F-fluoro- $5\hat{l}$ ±-dihydrotestosterone (FDHT) on the ELIXYS radiosynthesizer. Applied Radiation and Isotopes, 2015, 103, 9-14.	0.7	10
282	Fully automated synthesis of [¹⁸ F]fluoroâ€dihydrotestosterone ([¹⁸ F]FDHT) using the FlexLab module. Journal of Labelled Compounds and Radiopharmaceuticals, 2016, 59, 424-428.	0.5	10
283	Assessment of Simplified Methods for Quantification of 18F-FDHT Uptake in Patients with Metastatic Castration-Resistant Prostate Cancer. Journal of Nuclear Medicine, 2019, 60, 1221-1227.	2.8	10
284	A Molecularly Targeted Intraoperative Near-Infrared Fluorescence Imaging Agent for High-Grade Serous Ovarian Cancer. Molecular Pharmaceutics, 2020, 17, 3140-3147.	2.3	10
285	Manipulating the In Vivo Behaviour of 68Ga with Tris(Hydroxypyridinone) Chelators: Pretargeting and Blood Clearance. International Journal of Molecular Sciences, 2020, 21, 1496.	1.8	10
286	ERK Inhibition Improves Anti–PD-L1 Immune Checkpoint Blockade in Preclinical Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2021, 20, 2026-2034.	1.9	10
287	Fluorescence labeling of a NaV1.7-targeted peptide for near-infrared nerve visualization. EJNMMI Research, 2020, 10, 49.	1.1	10
288	Caveolin-1 temporal modulation enhances antibody drug efficacy in heterogeneous gastric cancer. Nature Communications, 2022, 13, 2526.	5.8	10

#	Article	IF	Citations
289	Pretargeted PET of Osteodestructive Lesions in Dogs. Molecular Pharmaceutics, 2022, 19, 3153-3162.	2.3	10
290	Synthesis and evaluation of 18F-labeled ATP competitive inhibitors of topoisomerase II as probes for imaging topoisomerase II expression. European Journal of Medicinal Chemistry, 2014, 86, 769-781.	2.6	9
291	Influence of free fatty acids on glucose uptake in prostate cancer cells. Nuclear Medicine and Biology, 2014, 41, 254-258.	0.3	9
292	Long–Half-Life ⁸⁹ Zr-Labeled Radiotracers Can Guide Percutaneous Biopsy Within the PET/CT Suite Without Reinjection of Radiotracer. Journal of Nuclear Medicine, 2018, 59, 399-402.	2.8	9
293	Aromatic carbohydrate amphiphile disrupts cancer spheroids and prevents relapse. Nanoscale, 2020, 12, 19088-19092.	2.8	8
294	Imaging of Cancer Î ³ -Secretase Activity Using an Inhibitor-Based PET Probe. Clinical Cancer Research, 2021, 27, 6145-6155.	3.2	8
295	Functionalised copper-64 complexes as precursors of potential PET imaging agents for neurodegenerative disorders. New Journal of Chemistry, 2009, 33, 1845.	1.4	7
296	Ex vivo sentinel lymph node mapping in laparoscopic resection of colon cancer. Colorectal Disease, 2011, 13, 1249-1255.	0.7	7
297	Antibody-Targeted Imaging of Gastric Cancer. Molecules, 2020, 25, 4621.	1.7	7
298	Synthesis and Comparative <i>In Vivo</i> Evaluation of Site-Specifically Labeled Radioimmunoconjugates for DLL3-Targeted ImmunoPET. Bioconjugate Chemistry, 2021, 32, 1255-1262.	1.8	7
299	"Friction by Definition― Conflict at Patient Handover Between Emergency and Internal Medicine Physicians at an Academic Medical Center. Western Journal of Emergency Medicine, 2021, 22, 1227-1239.	0.6	7
300	Harnessing the Bioorthogonal Inverse Electron Demand Diels-Alder Cycloaddition for Pretargeted PET Imaging. Journal of Visualized Experiments, 2015, , e52335.	0.2	6
301	Imaging Early-Stage Metastases Using an 18F-Labeled VEGFR-1-Specific Single Chain VEGF Mutant. Molecular Imaging and Biology, 2021, 23, 340-349.	1.3	6
302	Predicting CAR-T cell Immunotherapy Success through ImmunoPET. Clinical Cancer Research, 2021, 27, 911-912.	3.2	6
303	Antilipolytic drug boosts glucose metabolism in prostate cancer. Nuclear Medicine and Biology, 2013, 40, 524-528.	0.3	5
304	Leveraging synthetic chlorins for bio-imaging applications. Chemical Communications, 2020, 56, 12608-12611.	2.2	5
305	Radiopharmacologic screening of antibodies to the unshed ectodomain of MUC16 in ovarian cancer identifies a lead candidate for clinical translation. Nuclear Medicine and Biology, 2020, 86-87, 9-19.	0.3	5
306	First-in-Humans Trial of Dasatinib-Derivative Tracer for Tumor Kinase-Targeted PET. Journal of Nuclear Medicine, 2020, 61, 1580-1587.	2.8	5

#	Article	IF	CITATIONS
307	Influence of Fc Modifications and IgG Subclass on Biodistribution of Humanized Antibodies Targeting L1CAM. Journal of Nuclear Medicine, 2022, 63, 629-636.	2.8	5
308	EGFR-Targeted ImmunoPET of UMUC3 Orthotopic Bladder Tumors. Molecular Imaging and Biology, 2022, 24, 511-518.	1.3	5
309	pHâ€Responsive Polymers for Improving the Signalâ€ŧoâ€Noise Ratio of Hypoxia PET Imaging with [18 F]Fluoromisonidazole. Macromolecular Rapid Communications, 2020, 41, 2000061.	2.0	4
310	PET/CT Imaging with an 18F-Labeled Galactodendritic Unit in a Galectin-1–Overexpressing Orthotopic Bladder Cancer Model. Journal of Nuclear Medicine, 2020, 61, 1369-1375.	2.8	4
311	Immuno-PET Detects Changes in Multi-RTK Tumor Cell Expression Levels in Response to Targeted Kinase Inhibition. Journal of Nuclear Medicine, 2021, 62, 366-371.	2.8	4
312	Exploiting the MUC5AC Antigen for Noninvasive Identification of Pancreatic Cancer. Journal of Nuclear Medicine, 2021, 62, 1384-1390.	2.8	4
313	Copperâ€64/61 and iodineâ€125â€labeled dotaâ€DTYR ¹ â€octreotate: A new somatostatin analog f labeling with metals and halogens. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, S948.	or 0.5	3
314	Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers. Molecular Pharmaceutics, 2021, 18, 940-951.	2.3	3
315	3D-Printable Platform for High-Throughput Small-Animal Imaging. Journal of Nuclear Medicine, 2020, 61, 1691-1692.	2.8	3
316	Noninvasive Imaging of CD4+ T Cells in Humanized Mice. Molecular Cancer Therapeutics, 2022, 21, 658-666.	1.9	3
317	Radiopharmaceuticals for Imaging in Oncology with Special Emphasis on Positron-Emitting Agents. , 2013, , 35-78.		2
318	Molecular Imaging Companion Diagnostics. , 2019, , 201-228.		2
319	Technical Note: Patientâ€morphed meshâ€type phantoms to support personalized nuclear medicine dosimetry â€" a proof of concept study. Medical Physics, 2021, 48, 2018-2026.	1.6	2
320	Novel Tracers and Radionuclides in PET Imaging. Radiologic Clinics of North America, 2021, 59, 887-918.	0.9	2
321	Radiolabeled Antibodies for Tumor Imaging and Therapy. , 2005, , 685-714.		1
322	⁶⁴ Cuâ€PTSM as an inhibitor of tumor recurrence. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, S87.	0.5	0
323	Preface: 14th International Workshop on Targetry and Target Chemistry (WTTC)., 2012,,.		O
324	Precision Medicineâ€ Visualizedâ€"a Message from the President of the WMIC. Molecular Imaging and Biology, 2015, 17, 443-444.	1.3	0

#	Article	IF	CITATIONS
325	Emerging Radiopharmaceuticals in Clinical Oncology. , 2016, , 1-43.		O
326	The 2019 World Molecular Imaging Congress (WMIC) and Molecular Imaging and Biology (MIB) Awards. Molecular Imaging and Biology, 2020, 22, 6-8.	1.3	0
327	Changing of the Guard at Molecular Imaging & Siology. Molecular Imaging and Biology, 2020, 22, 1-3.	1.3	0
328	Antibody-Based Molecular Imaging. , 2021, , 547-562.		0
329	REPLY TO LETTER TO THE EDITOR: POTENTIAL USE OF RADIOLABELED ANTIBODIES FOR IMAGING AND TREATMENT OF COVID-19. Journal of Nuclear Medicine, 2021, 62, jnumed.121.261950.	2.8	0
330	State-of-the-Art of Radiometal-based Bioconjugates for Molecular Imaging and Radiotherapy. Bioconjugate Chemistry, 2021, 32, 1175-1176.	1.8	0
331	SU-GG-J-03: 3D Pathology Validation for Head-And-Neck Tumor Segmentation in PET/CT/MRI Images. Medical Physics, 2008, 35, 2679-2679.	1.6	0
332	Novel Positron Emitting Radiopharmaceuticals., 2016, , 1-43.		0
333	Novel Positron-Emitting Radiopharmaceuticals. , 2017, , 129-171.		0