Jonathan C Claussen

List of Publications by Citations

Source: https://exaly.com/author-pdf/988244/jonathan-c-claussen-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

74	3,080	32	55
papers	citations	h-index	g-index
79	3,530 ext. citations	7.9	5.31
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
74	Bacterial isolation by lectin-modified microengines. <i>Nano Letters</i> , 2012 , 12, 396-401	11.5	258
73	Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7519-22	16.4	220
72	Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano, 2009, 3, 37-	44 6.7	210
71	Increasing the activity of immobilized enzymes with nanoparticle conjugation. <i>Current Opinion in Biotechnology</i> , 2015 , 34, 242-50	11.4	179
70	Nanostructuring Platinum Nanoparticles on Multilayered Graphene Petal Nanosheets for Electrochemical Biosensing. <i>Advanced Functional Materials</i> , 2012 , 22, 3399-3405	15.6	176
69	3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. <i>Nanoscale</i> , 2016 , 8, 15870-9	7.7	93
68	Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates. <i>ACS Applied Materials & Detection of Organophosphates</i> . <i>ACS Applied Materials & Detection of Organophosphates</i> .	5-1215134	1 ⁸ 7
67	Complex logic functions implemented with quantum dot bionanophotonic circuits. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	85
66	Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 39124-39133	9.5	76
65	Biophotonic logic devices based on quantum dots and temporally-staggered FEster energy transfer relays. <i>Nanoscale</i> , 2013 , 5, 12156-70	7.7	74
64	A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. <i>Biosensors and Bioelectronics</i> , 2016 , 85, 479-487	11.8	73
63	A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2237-45	11.8	71
62	Nanomaterial-mediated Biosensors for Monitoring Glucose. <i>Journal of Diabetes Science and Technology</i> , 2014 , 8, 403-411	4.1	69
61	A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. <i>Nanotechnology</i> , 2011 , 22, 355502	3.4	69
60	Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. <i>Nanoscale</i> , 2019 , 11, 5222-5230	7.7	65
59	Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of in Chicken Broth. <i>ACS Sensors</i> , 2020 , 5, 1900-1911	9.2	62
58	A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. <i>Journal of Neuroscience Methods</i> , 2010 , 189, 14-22	3	58

(2018-2017)

57	Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array. <i>ACS Sensors</i> , 2017 , 2, 210-217	9.2	54	
56	Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. <i>ACS Applied Materials & Applied & Appl</i>	9.5	52	
55	Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites. <i>Analyst, The</i> , 2011 , 136, 4916-24	5	51	
54	Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11224		51	
53	Probing the Enzymatic Activity of Alkaline Phosphatase within Quantum Dot Bioconjugates. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 2208-2221	3.8	49	
52	Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing. <i>ACS Applied Materials & District Aces</i> , 2017 , 9, 12719-12727	9.5	47	
51	Electrical Differentiation of Mesenchymal Stem Cells into Schwann-Cell-Like Phenotypes Using Inkjet-Printed Graphene Circuits. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601087	10.1	45	
50	Transforming the fabrication and biofunctionalization of gold nanoelectrode arrays into versatile electrochemical glucose biosensors. <i>ACS Applied Materials & District Materials</i>	9.5	44	
49	High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography. <i>ACS Nano</i> , 2017 , 11, 9836-9845	16.7	43	
48	Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes. <i>Journal of Diabetes Science and Technology</i> , 2010 , 4, 312-9	4.1	43	
47	High Aspect Ratio Carbon Nanotube Membranes Decorated with Pt Nanoparticle Urchins for Micro Underwater Vehicle Propulsion via H2O2 Decomposition. <i>ACS Nano</i> , 2015 , 9, 7791-803	16.7	39	
46	Multiplexed and Switchable Release of Distinct Fluids from Microneedle Platforms via Conducting Polymer Nanoactuators for Potential Drug Delivery. <i>Sensors and Actuators B: Chemical</i> , 2012 , 161,	8.5	39	
45	Inkjet Printing of Single-Crystalline Bi2Te3 Thermoelectric Nanowire Networks. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600524	6.4	37	
44	Effects of Carbon Nanotube-Tethered Nanosphere Density on Amperometric Biosensing: Simulation and Experiment. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 20896-20904	3.8	37	
43	Platinum-paper micromotors: an urchin-like nanohybrid catalyst for green monopropellant bubble-thrusters. <i>ACS Applied Materials & Materia</i>	9.5	34	
42	Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene via salt impregnated inkjet maskless lithography. <i>Nanoscale Horizons</i> , 2019 , 4, 735-746	10.8	32	
41	CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening. <i>Biosensors and Bioelectronics</i> , 2018 , 117, 68-74	11.8	29	
40	Electrochemical Glucose Sensors Enhanced by Methyl Viologen and Vertically Aligned Carbon Nanotube Channels. <i>ACS Applied Materials & Distributed Sensors</i> (10, 28351-28360)	9.5	28	

39	Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing. <i>Nanoscale</i> , 2017 , 9, 19058-19065	7.7	27
38	Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring. <i>2D Materials</i> , 2020 , 7, 034002	5.9	27
37	Biosensing with FEster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes. <i>Sensors</i> , 2015 , 15, 14766-87	3.8	27
36	Enhanced enzymatic activity from phosphotriesterase trimer gold nanoparticle bioconjugates for pesticide detection. <i>Analyst, The</i> , 2017 , 142, 3261-3271	5	26
35	A triangular three-dye DNA switch capable of reconfigurable molecular logic. <i>RSC Advances</i> , 2014 , 4, 48860-48871	3.7	24
34	Oscillatory glucose flux in INS 1 pancreatic Itells: a self-referencing microbiosensor study. <i>Analytical Biochemistry</i> , 2011 , 411, 185-93	3.1	24
33	Label-free electrochemical immunosensor for the rapid and sensitive detection of the oxidative stress marker superoxide dismutase 1 at the point-of-care. <i>Sensors and Actuators B: Chemical</i> , 2016 , 236, 546-553	8.5	20
32	Fabrication of High-resolution Graphene-based Flexible Electronics via Polymer Casting. <i>Scientific Reports</i> , 2019 , 9, 10595	4.9	20
31	Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701046	10.1	18
30	Ion-Selective Sensors Based on Laser-Induced Graphene for Evaluating Human Hydration Levels Using Urine Samples. <i>Advanced Materials Technologies</i> , 2020 , 5, 1901037	6.8	17
29	Independently addressable fields of porous anodic alumina embedded in SiO2 on Si. <i>Applied Physics Letters</i> , 2008 , 92, 013122	3.4	17
28	Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1137	76 ⁷ 1 ¹ 138	38 ¹⁵
27	Improving sensitivity of electrochemical sensors with convective transport in free-standing, carbon nanotube structures. <i>Sensors and Actuators B: Chemical</i> , 2017 , 246, 20-28	8.5	14
26	Electrochemical cotinine sensing with a molecularly imprinted polymer on a graphene-platinum nanoparticle modified carbon electrode towards cigarette smoke exposure monitoring. <i>Sensors and Actuators B: Chemical</i> , 2019 , 287, 165-172	8.5	14
25	Platinum Nanoparticle Decorated SiO Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 30941-30947	9.5	14
24	Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose. <i>Mikrochimica Acta</i> , 2019 , 186, 533	5.8	13
23	pulSED: pulsed sonoelectrodeposition of fractal nanoplatinum for enhancing amperometric biosensor performance. <i>Analyst, The</i> , 2016 , 141, 3367-78	5	13
22	SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. <i>Sensors</i> , 2019 , 19,	3.8	11

21	Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. <i>Planta</i> , 2013 , 238, 599-614	4.7	7
20	Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. <i>ACS Nano</i> , 2021 ,	16.7	7
19	Cryoconcentration of flavonoid extract for enhanced biophotovoltaics and pH sensitive thin films. <i>Biotechnology Progress</i> , 2018 , 34, 206-217	2.8	6
18	Hybrid Metallic Nanoparticles: Enhanced Bioanalysis and Biosensing via Carbon Nanotubes, Graphene, and Organic Conjugation 2015 , 137-166		4
17	Synthesis and applications of cellulose nanohybrid materials 2017 , 289-320		4
16	All-graphene-based open fluidics for pumpless, small-scale fluid transport laser-controlled wettability patterning. <i>Nanoscale Horizons</i> , 2021 , 6, 24-32	10.8	4
15	Porous Wood Monoliths Decorated with Platinum Nano-Urchins as Catalysts for Underwater Micro-Vehicle Propulsion via H2O2 Decomposition. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4143-4149	5.6	3
14	Using Nanotechnology to Improve Lab on a Chip Devices. <i>Journal of Biochips & Tissue Chips</i> , 2012 , 02,		3
13	3D Interdigitated Vertically Aligned Carbon Nanotube Electrodes for Electrochemical Impedimetric Biosensing. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10166-10175	5.6	3
12	Electrochemical Sensing of Neonicotinoids Using Laser-Induced Graphene. ACS Sensors, 2021, 6, 3063-3	07.1	3
11	Fabrication of Two-Dimensional and Three-Dimensional High-Resolution Binder-Free Graphene Circuits Using a Microfluidic Approach for Sensor Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 13529-13539	9.5	2
10	Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (FEster) resonance energy transfer 2013,		2
9	Determination of Electrical Stimuli Parameters To Transdifferentiate Genetically Engineered Mesenchymal Stem Cells into Neuronal or Glial Lineages. <i>Regenerative Engineering and Translational Medicine</i> , 2020 , 6, 18-28	2.4	2
8	Modified kinetics of enzymes interacting with nanoparticles 2015,		1
7	Electrochemical Biosensors Based on Carbon Nanotubes 2012 ,		1
6	Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 6201-6212	4.4	1
5	Microbial Pathogen Detection Strategies 2010 , 1-4		0
4	Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing <i>Mikrochimica Acta</i> , 2022 , 189, 122	5.8	O

- 3 Electrochemical Immunobiosensors for Point-of-Care Detection of Hypoxia Biomarkers **2018**, 257-276
- 2 FRET-Based Cellular Sensing with Genetically Encoded Fluorescent Indicators **2013**, 397-429
- Biosensor Capture Kinetics Model of Nanocube-Augmented Carbon Nanotube Networks. *Materials Research Society Symposia Proceedings*, **2009**, 1236, 1