Matthew J Dorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 2021, 184, 64-75.e11.	13.5	843
2	SARS-CoV-2 evolution during treatment of chronic infection. Nature, 2021, 592, 277-282.	13.7	802
3	Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science, 2021, 371, 708-712.	6.0	335
4	Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell, 2021, 184, 1171-1187.e20.	13.5	541
5	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.	13.7	648
6	Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health, The, 2021, 6, e335-e345.	4.7	269
7	gbpA and chiA genes are not uniformly distributed amongst diverse Vibrio cholerae. Microbial Genomics, 2021, 7, .	1.0	2
8	Characterisation of Bacteriophage-Encoded Depolymerases Selective for Key Klebsiella pneumoniae Capsular Exopolysaccharides. Frontiers in Cellular and Infection Microbiology, 2021, 11, 686090.	1.8	14
9	Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Reports, 2021, 35, 109292.	2.9	375
10	Genomic contextualisation of ancient DNA molecular data from an Argentinian fifth pandemic Vibrio cholerae infection. Microbial Genomics, 2021, 7, .	1.0	0
11	Getting ahead of the competition. Nature Reviews Microbiology, 2021, 19, 551-551.	13.6	0
12	The impact of viral mutations on recognition by SARS-CoV-2 specific TÂcells. IScience, 2021, 24, 103353.	1.9	57
13	Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science, 2021, 374, eabl9551.	6.0	111
14	Genomics of the Argentinian cholera epidemic elucidate the contrasting dynamics of epidemic and endemic Vibrio cholerae. Nature Communications, 2020, 11, 4918.	5.8	12
15	An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe, The, 2020, 1, e99-e100.	3.4	232
16	Type II and type IV toxin–antitoxin systems show different evolutionary patterns in the global Klebsiella pneumoniae population. Nucleic Acids Research, 2020, 48, 4357-4370.	6.5	14
17	â€~Community evolution' – laboratory strains and pedigrees in the age of genomics. Microbiology (United Kingdom), 2020, 166, 233-238.	0.7	8
18	Loss of RNA Chaperone Hfq Unveils a Toxic Pathway in Pseudomonas aeruginosa. Journal of Bacteriology, 2019, 201, .	1.0	7

Matthew J Dorman

#	Article	IF	CITATIONS
19	Contrasting patterns of longitudinal population dynamics and antimicrobial resistance mechanisms in two priority bacterial pathogens over 7Âyears in a single center. Genome Biology, 2019, 20, 184.	3.8	22
20	Novel Insights Into the Spread of Enteric Pathogens Using Genomics. Journal of Infectious Diseases, 2019, 221, S319-S330.	1.9	2
21	Separating Bacteria by Capsule Amount Using a Discontinuous Density Gradient. Journal of Visualized Experiments, 2019, , .	0.2	6
22	The history, genome and biology of NCTC 30: a non-pandemic Vibrio cholerae isolate from World War One. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182025.	1.2	18
23	High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Scientific Reports, 2019, 9, 5865.	1.6	13
24	Using human iPSC derived small intestinal organoids as a model for enteric disease caused by Enterotoxigenic E. coli and Vibrio cholerae. Access Microbiology, 2019, 1, .	0.2	2
25	The utilisation of organoids and macrophages derived from Human induced pluripotent stem cells as model systems to investigate host-bacterial interactions. Access Microbiology, 2019, 1, .	0.2	1
26	The Capsule Regulatory Network of <i>Klebsiella pneumoniae</i> Defined by density-TraDISort. MBio, 2018, 9, .	1.8	78
27	The Evolution of Gene Regulatory Mechanisms in Bacteria. Grand Challenges in Biology and Biotechnology, 2018, , 125-152.	2.4	4
28	Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Frontiers in Microbiology, 2018, 9, 2686.	1.5	31
29	Defining endemic cholera at three levels of spatiotemporal resolution within Bangladesh. Nature Genetics, 2018, 50, 951-955.	9.4	37
30	Control of virulence gene transcription by indirect readout in <i>Vibrio cholerae</i> and <i>Salmonella enterica</i> serovar Typhimurium. Environmental Microbiology, 2017, 19, 3834-3845.	1.8	26
31	Integrated view of <i>Vibrio cholerae</i> in the Americas. Science, 2017, 358, 789-793.	6.0	128
32	Klebsiella pneumoniae: when a colonizer turns bad. Nature Reviews Microbiology, 2017, 15, 384-384.	13.6	27
33	DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophysical Reviews, 2016, 8, 89-100.	1.5	89
34	DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophysical Reviews, 2016, 8, 209-220.	1.5	73
35	Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clinical Science, 2016, 130, 1165-1177.	1.8	11