
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988017/publications.pdf Version: 2024-02-01

ONNO LADNTZ

#	Article	IF	CITATIONS
1	Bovine Milkâ€Đerived Extracellular Vesicles Inhibit Catabolic and Inflammatory Processes in Cartilage from Osteoarthritis Patients. Molecular Nutrition and Food Research, 2022, 66, e2100764.	1.5	13
2	Comparing Approaches to Normalize, Quantify, and Characterize Urinary Extracellular Vesicles. Journal of the American Society of Nephrology: JASN, 2021, 32, 1210-1226.	3.0	53
3	Therapeutic Potential for Regulation of the Nuclear Factor Kappa-B Transcription Factor p65 to Prevent Cellular Senescence and Activation of Pro-Inflammatory in Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 3367.	1.8	20
4	Extracellular vesicles regulate purinergic signaling and epithelial sodium channel expression in renal collecting duct cells. FASEB Journal, 2021, 35, e21506.	0.2	9
5	Flood Control: How Milk-Derived Extracellular Vesicles Can Help to Improve the Intestinal Barrier Function and Break the Gut–Joint Axis in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 703277.	2.2	24
6	Influence of mesenchymal stem cell-derived extracellular vesicles in vitro and their role in ageing. Stem Cell Research and Therapy, 2020, 11, 13.	2.4	32
7	An optimized method for plasma extracellular vesicles isolation to exclude the copresence of biological drugs and plasma proteins which impairs their biological characterization. PLoS ONE, 2020, 15, e0236508.	1.1	8
8	Rheumatoid Arthritis Patients With Circulating Extracellular Vesicles Positive for IgM Rheumatoid Factor Have Higher Disease Activity. Frontiers in Immunology, 2018, 9, 2388.	2.2	21
9	Milk-Derived Nanoparticle Fraction Promotes the Formation of Small Osteoclasts But Reduces Bone Resorption. Journal of Cellular Physiology, 2017, 232, 225-233.	2.0	36
10	06.07â€Disease-inducible interleukin-10 gene therapy suppresses innate cytokine response in the 3d micromass model of the synovial membrane. , 2017, , .		0
11	Suppression of the inflammatory response by disease-inducible interleukin-10 gene therapy in a three-dimensional micromass model of the human synovial membrane. Arthritis Research and Therapy, 2016, 18, 186.	1.6	21
12	Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation. Journal of Nutritional Biochemistry, 2016, 30, 74-84.	1.9	40
13	Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis. Human Gene Therapy, 2016, 27, 244-254.	1.4	54
14	Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Molecular Nutrition and Food Research, 2015, 59, 1701-1712.	1.5	205
15	Commercial Cow Milk Contains Physically Stable Extracellular Vesicles Expressing Immunoregulatory TGF-1². PLoS ONE, 2015, 10, e0121123.	1.1	163
16	Disease-regulated local IL-10 gene therapy diminishes synovitis and cartilage proteoglycan depletion in experimental arthritis. Annals of the Rheumatic Diseases, 2015, 74, 2084-2091.	0.5	31
17	In Vivo Molecular Imaging of Cathepsin and Matrix Metalloproteinase Activity Discriminates between Arthritic and Osteoarthritic Processes in Mice. Molecular Imaging, 2014, 13, 7290.2014.00001.	0.7	17
18	Serum Samples That Have Been Stored Long-Term (>10 Years) Can Be Used as a Suitable Data Source for Developing Cardiovascular Risk Prediction Models in Large Observational Rheumatoid Arthritis Cohorts. BioMed Research International, 2014, 2014, 1-8.	0.9	7

#	Article	IF	CITATIONS
19	A5.14â€Disease-regulated local interleukin-10 gene therapy diminishes synovitis and articular cartilage damage in experimental arthritis. Annals of the Rheumatic Diseases, 2014, 73, A68.2-A69.	0.5	1
20	A5.15â€The validation of disease-inducible promoter constructs for gene therapy in rheumatoid arthritis and osteoarthritis in human THP-1 cells Annals of the Rheumatic Diseases, 2014, 73, A69.1-A69.	0.5	2
21	Toll-like receptor 4 in bone marrow-derived cells as well as tissue-resident cells participate in aggravating autoimmune destructive arthritis. Annals of the Rheumatic Diseases, 2013, 72, 1407-1415.	0.5	4
22	A6.11â€Intra-Articular Overexpression of Interleukin-10 Diminishes Cartilage Proteoglycan Depletion in Streptococcal Cell Wall Arthritis: A Promising Concept for Disease-Regulated Gene Therapy. Annals of the Rheumatic Diseases, 2013, 72, A46.1-A46.	0.5	0
23	Intravenous Delivery of HIV-Based Lentiviral Vectors Preferentially Transduces F4/80+ and Ly-6C+ Cells in Spleen, Important Target Cells in Autoimmune Arthritis. PLoS ONE, 2013, 8, e55356.	1.1	9
24	NIR-fluorescence imaging points at a role for matrix-metalloproteinases in causing irreversible cartilage damage during collagen-induced arthritis. Annals of the Rheumatic Diseases, 2012, 71, A61.3-A62.	0.5	0
25	Lack of TLR4 on bone marrow derived cells ameliorates experimental arthritis and decreases cd4 ⁻ IL-17 ⁺ cells. Annals of the Rheumatic Diseases, 2012, 71, A74.2-A75.	0.5	0
26	Enhanced suppressor of cytokine signaling 3 in arthritic cartilage dysregulates human chondrocyte function. Arthritis and Rheumatism, 2012, 64, 3313-3323.	6.7	23
27	Destructive role of myeloid differentiation factor 88 and protective role of TRIF in interleukinâ€17–dependent arthritis in mice. Arthritis and Rheumatism, 2012, 64, 1838-1847.	6.7	20
28	A novel Saa3-promoter reporter distinguishes inflammatory subtypes in experimental arthritis and human synovial fibroblasts. Annals of the Rheumatic Diseases, 2011, 70, 1311-1319.	0.5	20
29	A pivotal role for antigen-presenting cells overexpressing SOCS3 in controlling invariant NKT cell responses during collagen-induced arthritis. Annals of the Rheumatic Diseases, 2011, 70, 2167-2175.	0.5	20
30	Identifying the TLR4 bearing target cell in experimental arthritis. Annals of the Rheumatic Diseases, 2011, 70, A42-A42.	0.5	0
31	Toll-like receptor-4 signalling is specifically tak1-independent in synovial fibroblasts. Annals of the Rheumatic Diseases, 2011, 70, A16-A17.	0.5	0
32	Toll-like receptor 4 signalling is specifically TGF-beta-activated kinase 1 independent in synovial fibroblasts. Rheumatology, 2011, 50, 1216-1225.	0.9	19
33	The natural soluble form of IL-18 receptor β exacerbates collagen-induced arthritis via modulation of T-cell immune responses. Annals of the Rheumatic Diseases, 2010, 69, 276-283.	0.5	30
34	A crucial role for tumor necrosis factor receptor 1 in synovial lining cells and the reticuloendothelial system in mediating experimental arthritis. Arthritis Research and Therapy, 2010, 12, R61.	1.6	21
35	Computational Design and Application of Endogenous Promoters for Transcriptionally Targeted Gene Therapy for Rheumatoid Arthritis. Molecular Therapy, 2009, 17, 1877-1887.	3.7	18
36	Splenic suppressor of cytokine signaling 3 transgene expression affects T cell responses and prevents development of collagenâ€induced arthritis. Arthritis and Rheumatism, 2008, 58, 3742-3752.	6.7	35

#	Article	IF	CITATIONS
37	Application of a disease-regulated promoter is a safer mode of local IL-4 gene therapy for arthritis. Gene Therapy, 2007, 14, 1632-1638.	2.3	28
38	791. Unraveling Disease-Inducible Promoters from Gene Expression Profiling for Therapeutic Application in Arthritis. Molecular Therapy, 2006, 13, S306-S307.	3.7	0
39	Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthritis and Cartilage, 2005, 13, 66-73.	0.6	139
40	Soluble interleukin-1 receptor accessory protein ameliorates collagen-induced arthritis by a different mode of action from that of interleukin-1 receptor antagonist. Arthritis and Rheumatism, 2005, 52, 2202-2211.	6.7	43
41	An inflammation-inducible adenoviral expression system for local treatment of the arthritic joint. Gene Therapy, 2004, 11, 581-590.	2.3	55
42	Local activation of STAT-1 and STAT-3 in the inflamed synovium during zymosan-induced arthritis: Exacerbation of joint inflammation in STAT-1 gene-knockout mice. Arthritis and Rheumatism, 2004, 50, 2014-2023.	6.7	83
43	Growth plate damage, a feature of juvenile idiopathic arthritis, can be induced by adenoviral gene transfer of oncostatin M: A comparative study in gene-deficient mice. Arthritis and Rheumatism, 2003, 48, 1750-1761.	6.7	29
44	Effectiveness of the soluble form of the interleukin-1 receptor accessory protein as an inhibitor of interleukin-1 in collagen-induced arthritis. Arthritis and Rheumatism, 2003, 48, 2949-2958.	6.7	42
45	Adenoviral delivery of IL-18 binding protein C ameliorates Collagen-Induced Arthritis in mice. Gene Therapy, 2003, 10, 1004-1011.	2.3	273
46	Deficiency of NADPH Oxidase Components p47phox and gp91phox Caused Granulomatous Synovitis and Increased Connective Tissue Destruction in Experimental Arthritis Models. American Journal of Pathology, 2003, 163, 1525-1537.	1.9	83
47	Adenoviral Transfer of Murine Oncostatin M Elicits Periosteal Bone Apposition in Knee Joints of Mice, Despite Synovial Inflammation and Up-Regulated Expression of Interleukin-6 and Receptor Activator of Nuclear Factor-ήB Ligand. American Journal of Pathology, 2002, 160, 1733-1743.	1.9	51
48	A tropism-modified adenoviral vector increased the effectiveness of gene therapy for arthritis. Gene Therapy, 2001, 8, 1785-1793.	2.3	213
49	Involvement of IL-6, Apart from Its Role in Immunity, in Mediating a Chronic Response during Experimental Arthritis. American Journal of Pathology, 2000, 157, 2081-2091.	1.9	67
50	Animal models of arthritis in NOS2-deficient mice. Osteoarthritis and Cartilage, 1999, 7, 413-415.	0.6	77
51	Reduced cartilage proteoglycan loss during zymosan-induced gonarthritis in NOS2-deficient mice and in anti-interleukin-1-treated wild-type mice with unabated joint inflammation. Arthritis and Rheumatism, 1998, 41, 634-646.	6.7	102
52	DIFFERENT ROLES OF TUMOUR NECROSIS FACTOR $\hat{\mathbf{I}}\pm$ AND INTERLEUKIN 1 IN MURINE STREPTOCOCCAL CELL WALL ARTHRITIS. Cytokine, 1998, 10, 690-702.	1.4	132
53	EFFECT OF INTERLEUKIN 1 AND LEUKAEMIA INHIBITORY FACTOR ON CHONDROCYTE METABOLISM IN ARTICULAR CARTILAGE FROM NORMAL AND INTERLEUKIN-6-DEFICIENT MICE: ROLE OF NITRIC OXIDE AND IL-6 IN THE SUPPRESSION OF PROTEOGLYCAN SYNTHESIS. Cytokine, 1997, 9, 453-462.	1.4	34
54	Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee. Arthritis and Rheumatism, 1997, 40, 893-900.	6.7	184

#	Article	IF	CITATIONS
55	Role of interleukin-1, tumor necrosis factor α, and interleukin-6 in cartilage proteoglycan metabolism and destruction effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis and Rheumatism, 1995, 38, 164-172.	6.7	365
56	In vivo effects of interleukin-1 on articular cartilage. Prolongation of proteoglycan metabolic disturbances in old mice. Arthritis and Rheumatism, 1991, 34, 606-615.	6.7	78
57	In Vivo Evidence for a Key Role of Il-1 in Cartilage Destruction in Experimental Arthritis. , 1991, 32, 159-163.		19
58	Age- and sex-related differences in antigen-induced arthritis in c57bl/10 mice. Arthritis and Rheumatism, 1989, 32, 789-794.	6.7	17