Renchao Che

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/987915/publications.pdf Version: 2024-02-01

	9234	11581
21,309	74	135
citations	h-index	g-index
		1070 (
252	252	12724
docs citations	times ranked	citing authors
	21,309 citations 252 docs citations	21,309 citations 252 docs citations 252 times ranked

#	Article	IF	CITATIONS
1	A New Sodium Calcium Cyclotetravanadate Framework: "Zeroâ€Strain―during Largeâ€Capacity Lithium Intercalation. Advanced Functional Materials, 2022, 32, 2105026.	7.8	30
2	Conductivity optimization via intertwined CNTs between TiNb2O7@C microspheres for a superior performance Li-ion battery anode. Journal of Colloid and Interface Science, 2022, 607, 1103-1108.	5.0	10
3	Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption. Journal of Colloid and Interface Science, 2022, 607, 210-218.	5.0	39
4	Interface compatibility engineering of Multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. Chemical Engineering Journal, 2022, 429, 132191.	6.6	71
5	A Low Strain Aâ€5ite Deficient Perovskite Lithium Lanthanum Niobate Anode for Superior Li ⁺ Storage. Advanced Functional Materials, 2022, 32, 2106911.	7.8	28
6	Selfâ€Adapting Electrochemical Grinding Strategy for Stable Silicon Anode. Advanced Functional Materials, 2022, 32, 2109887.	7.8	14
7	Initiating VBâ€Group Laminated NbS ₂ Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48ÂGHz through Phase Engineering Modulation. Advanced Functional Materials, 2022, 32, 2108194.	7.8	147
8	Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chemical Engineering Journal, 2022, 430, 132949.	6.6	65
9	Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. Journal of Materials Science and Technology, 2022, 107, 100-110.	5.6	60
10	Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Advanced Materials, 2022, 34, e2107538.	11.1	353
11	Impedance amelioration of coaxial-electrospun TiO2@Fe/C@TiO2 vesicular carbon microtubes with dielectric-magnetic synergy toward highly efficient microwave absorption. Chemical Engineering Journal, 2022, 433, 133640.	6.6	25
12	General biotemplating of hierarchically ultra-vesicular microspheres for superior microwave absorption. Chemical Engineering Journal, 2022, 431, 133925.	6.6	8
13	Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance. Carbon, 2022, 189, 530-538.	5.4	34
14	Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale hetero-interfaces. Journal of Materials Chemistry A, 2022, 10, 1290-1298.	5.2	68
15	Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon, 2022, 191, 625-635.	5.4	95
16	Dual-surfactant templated hydrothermal synthesis of CoSe2 hierarchical microclews for dielectric microwave absorption. Journal of Advanced Ceramics, 2022, 11, 504-514.	8.9	24
17	Interface engineering in the hierarchical assembly of carbon-confined Fe ₃ O ₄ nanospheres for enhanced microwave absorption. Journal of Materials Chemistry A, 2022, 10, 8807-8816.	5.2	32
18	Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nano-Micro Letters, 2022, 14, 80.	14.4	159

#	Article	IF	CITATIONS
19	Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Advanced Composites and Hybrid Materials, 2022, 5, 2429-2439.	9.9	30
20	Atomic Shortâ€Range Order in a Cationâ€Deficient Perovskite Anode for Fastâ€Charging and Longâ€Life Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2200914.	11.1	25
21	Tailoring Selfâ€Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward Highâ€Performance Consecutive Multiâ€Band Electromagnetic Wave Absorption at Gigahertz. Advanced Functional Materials, 2022, 32, .	7.8	135
22	Self-Assembly MXene-rGO/CoNi Film with Massive Continuous Heterointerfaces and Enhanced Magnetic Coupling for Superior Microwave Absorber. Nano-Micro Letters, 2022, 14, 73.	14.4	68
23	Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon, 2022, 195, 44-56.	5.4	50
24	Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption. Nano-Micro Letters, 2022, 14, 96.	14.4	64
25	High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti ₃ C ₂ T _{<i>x</i>} MXene@Ni Microspheres. ACS Nano, 2022, 16, 1150-1159.	7.3	249
26	Respective Roles of Inner and Outer Carbon in Boosting the K ⁺ Storage Performance of Dualâ€Carbonâ€Confined ZnSe. Advanced Science, 2022, 9, e2104822.	5.6	35
27	Hierarchical Ti ₃ C ₂ T <i>_x</i> MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption. Small, 2022, 18, e2104380.	5.2	77
28	Selective assembly of magnetic nano-antenna for electromagnetic dissipation. Journal of Materials Chemistry A, 2022, 10, 10909-10915.	5.2	8
29	Emerging Materials and Designs for Low―and Multiâ€Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?. Advanced Functional Materials, 2022, 32, .	7.8	185
30	Customizing Heterointerfaces in Multilevel Hollow Architecture Constructed by Magnetic Spindle Arrays Using the Polymerizingâ€Etching Strategy for Boosting Microwave Absorption. Advanced Science, 2022, 9, e2200804.	5.6	61
31	Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Research, 2022, 15, 6743-6750.	5.8	31
32	Chiral Asymmetric Polarizations Generated by Bioinspired Helical Carbon Fibers to Induce Broadband Microwave Absorption and Multispectral Photonic Manipulation. Advanced Optical Materials, 2022, 10, .	3.6	24
33	Construction of CoNiFe Trimetallic Carbonate Hydroxide Hierarchical Hollow Microflowers with Oxygen Vacancies for Electrocatalytic Water Oxidation. Advanced Functional Materials, 2022, 32, .	7.8	27
34	Hierarchical Engineering of Doubleâ€Shelled Nanotubes toward Heteroâ€Interfaces Induced Polarization and Microscale Magnetic Interaction. Advanced Functional Materials, 2022, 32, .	7.8	161
35	Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly. Journal of the American Chemical Society, 2022, 144, 11767-11777.	6.6	41
36	Magnetic Interacted Interaction Effect in MXene Skeleton: Enhanced Thermalâ€Generation for Electromagnetic Interference Shielding. Small, 2022, 18, .	5.2	31

#	Article	IF	CITATIONS
37	Recyclable magnetic carbon foams possessing voltage-controllable electromagnetic shielding and oil/water separation. Carbon, 2022, 197, 570-578.	5.4	15
38	Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 131, 231-239.	5.6	26
39	Remarkable Magnetic Exchange Coupling via Constructing Biâ€Magnetic Interface for Broadband Lowerâ€Frequency Microwave Absorption. Advanced Functional Materials, 2022, 32, .	7.8	82
40	Morphology-Evolved Succulent-like FeCo Microarchitectures with Magnetic Configuration Regulation for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2022, 14, 32369-32378.	4.0	16
41	Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Advanced Composites and Hybrid Materials, 2022, 5, 3012-3022.	9.9	25
42	Urchin-like cobalt hydroxide coupled with N-doped carbon dots hybrid for enhanced electrocatalytic water oxidation. Chemical Engineering Journal, 2021, 420, 127598.	6.6	29
43	Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon, 2021, 172, 516-528.	5.4	85
44	Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. Carbon, 2021, 172, 15-25.	5.4	59
45	Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Applied Surface Science, 2021, 538, 148051.	3.1	74
46	Yolkâ^'Shell Nano ZnO@Coâ€Doped NiO with Efficient Polarization Adsorption and Catalysis Performance for Superior Lithiumâ^'Sulfur Batteries. Small, 2021, 17, e2005227.	5.2	37
47	Recent progress of microwave absorption microspheres by magnetic–dielectric synergy. Nanoscale, 2021, 13, 2136-2156.	2.8	131
48	Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale, 2021, 13, 2324-2332.	2.8	30
49	Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within "Tubes on Rods―Matrix Toward Enhanced Microwave Absorption. Nano-Micro Letters, 2021, 13, 47.	14.4	124
50	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	5.2	184
51	Compressible and flexible PPy@MoS ₂ /C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure. Nanoscale, 2021, 13, 5115-5124.	2.8	23
52	Compensation mechanism of carriers within weakly coupled quantum wells. Applied Physics Letters, 2021, 118, 122107.	1.5	0
53	1D Electromagnetic-Gradient Hierarchical Carbon Microtube via Coaxial Electrospinning Design for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2021, 13, 15939-15949.	4.0	54
54	Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Advanced Composites and Hybrid Materials, 2021, 4, 505-513.	9.9	190

<u>RENCHAO</u> CHE</u>

#	Article	IF	CITATIONS
55	MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon, 2021, 175, 509-518.	5.4	106
56	Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber. Carbon, 2021, 175, 499-508.	5.4	50
57	Hollow Engineering to Co@Nâ€Doped Carbon Nanocages via Synergistic Protectingâ€Etching Strategy for Ultrahigh Microwave Absorption. Advanced Functional Materials, 2021, 31, 2102812.	7.8	488
58	C/MnO@void@C with Triple Balances for Superior Microwave Absorption Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 32037-32045.	4.0	33
59	Direct View on the Origin of High Li ⁺ Transfer Impedance in Allâ€Solidâ€State Battery. Advanced Functional Materials, 2021, 31, 2103971.	7.8	23
60	Charge modulation of CNTs-based conductive network for oxygen reduction reaction and microwave absorption. Carbon, 2021, 178, 310-319.	5.4	30
61	A Polarization Boosted Strategy for the Modification of Transition Metal Dichalcogenides as Electrocatalysts for Waterâ€Splitting. Small, 2021, 17, e2100510.	5.2	9
62	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29101-29112.	4.0	51
63	Insights into Growth-Oriented Interfacial Modulation within Semiconductor Multilayers. ACS Applied Materials & amp; Interfaces, 2021, 13, 27262-27269.	4.0	4
64	Understanding of Strainâ€Induced Electronic Structure Changes in Metalâ€Based Electrocatalysts: Using Pd@Pt Coreâ€Shell Nanocrystals as an Ideal Platform. Small, 2021, 17, e2100559.	5.2	15
65	Multiâ€Path Electron Transfer in 1D Doubleâ€Shelled Sn@Mo ₂ C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance. Small, 2021, 17, e2100283.	5.2	55
66	Single Zinc Atoms Anchored on MOFâ€Đerived Nâ€Đoped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. Small, 2021, 17, e2101416.	5.2	92
67	Enhanced Magnetic Microwave Absorption at Lowâ€Frequency Band by Ferrite Assembled Microspheres with Controlled Components and Morphologies. Small Structures, 2021, 2, 2100033.	6.9	22
68	Confined Magneticâ€Dielectric Balance Boosted Electromagnetic Wave Absorption. Small, 2021, 17, e2100970.	5.2	71
69	Fabrication of Hollow Cube Dual-Semiconductor Ln ₂ O ₃ /MnO/C Nanocomposites with Excellent Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2021, 13, 28689-28702.	4.0	61
70	The ordered mesoporous carbon coated graphene as a high-performance broadband microwave absorbent. Carbon, 2021, 179, 435-444.	5.4	41
71	Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. Journal of Alloys and Compounds, 2021, 869, 159365.	2.8	61
72	In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chemical Engineering Journal, 2021, 415, 128951.	6.6	42

#	Article	IF	CITATIONS
73	3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization. Nano-Micro Letters, 2021, 13, 157.	14.4	119
74	Interfacial optimization of PtNi octahedrons@Ti3C2MXene with enhanced alkaline hydrogen evolution activity and stability. Applied Catalysis B: Environmental, 2021, 291, 120100.	10.8	67
75	Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption. Chemical Engineering Journal, 2021, 419, 130020.	6.6	60
76	Unusual effects of vacuum annealing on large-area Ag3PO4 microcrystalline film photoanode boosting cocatalyst- and scavenger-free water splitting. Journal of Materiomics, 2021, 7, 929-939.	2.8	8
77	Probing the atomic interaction between zinc clusters and defective carbon in promoting the wide temperature applications of lithium-sulfur battery. Energy Storage Materials, 2021, 41, 703-714.	9.5	10
78	Interfacial charge redistribution in interconnected network of Ni2P–Co2P boosting electrocatalytic hydrogen evolution in both acidic and alkaline conditions. Chemical Engineering Journal, 2021, 424, 130444.	6.6	76
79	Accurately Engineering 2 <i>D</i> /2D/0D Heterojunction In Hierarchical Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures for Electromagnetic Wave Absorption and Shielding. ACS Applied Materials & Interfaces, 2021, 13, 5866-5876.	4.0	56
80	Synthesis of Nonspherical Hollow Architecture with Magnetic Fe Core and Ni Decorated Tadpole‣ike Shell as Ultrabroad Bandwidth Microwave Absorbers. Small, 2021, 17, e2103351.	5.2	36
81	Zero-strain Ca _{0.4} Ce _{0.6} VO ₄ anode material for high capacity and long-life Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 25663-25671.	5.2	4
82	Controllable Domain Walls in Two-Dimensional Ferromagnetic Material Fe ₃ GeTe ₂ Based on the Spin-Transfer Torque Effect. ACS Nano, 2021, 15, 19513-19521.	7.3	6
83	Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon, 2020, 157, 130-139.	5.4	310
84	In-situ electrochemical pretreatment of hierarchical Ni3S2-based electrocatalyst towards promoted hydrogen evolution reaction with low overpotential. Journal of Colloid and Interface Science, 2020, 559, 282-290.	5.0	32
85	MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chemical Engineering Journal, 2020, 383, 123099.	6.6	407
86	Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. Applied Catalysis B: Environmental, 2020, 262, 118298.	10.8	70
87	3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chemical Engineering Journal, 2020, 379, 122241.	6.6	128
88	Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chemical Engineering Journal, 2020, 384, 123371.	6.6	161
89	Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis. Nano Research, 2020, 13, 437-446.	5.8	45
90	Rational design of 2D hierarchically laminated Fe ₃ O ₄ @nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. Journal of Materials Chemistry C, 2020, 8, 2123-2134.	2.7	183

<u>RENCHAO</u> CHE</u>

#	Article	IF	CITATIONS
91	3D conductive network wrapped CeO2-x Yolk@Shell hybrid microspheres for selective-frequency microwave absorption. Carbon, 2020, 162, 86-94.	5.4	49
92	In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Research, 2020, 13, 72-78.	5.8	36
93	MOF Induces 2D GO to Assemble into 3D Accordionâ€Like Composites for Tunable and Optimized Microwave Absorption Performance. Small, 2020, 16, e2003905.	5.2	85
94	MOF-Derived Ni1â^'xCox@Carbon with Tunable Nano–Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber. Nano-Micro Letters, 2020, 12, 150.	14.4	222
95	Pb/C Composite with Spherical Pb Nanoparticles Encapsulated in Carbon Microspheres as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 7416-7426.	2.5	13
96	Polarization-enhanced three-dimensional Co ₃ O ₄ /MoO ₂ /C flowers as efficient microwave absorbers. Journal of Materials Chemistry C, 2020, 8, 10248-10256.	2.7	17
97	Excellent microwave absorbing properties of ZnO/ZnFe2O4/Fe core-shell microrods prepared by a rapid microwave-assisted hydrothermal-chemical vapor decomposition method. Applied Surface Science, 2020, 531, 147353.	3.1	35
98	Skyrmion bubbles stabilization in confined hole and trench materials. Applied Physics Letters, 2020, 117, .	1.5	3
99	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Interfaces, 2020, 12, 50793-50802.	4.0	47
100	Rutile TiO ₂ Nanoparticles Encapsulated in a Zeolitic Imidazolate Framework-Derived Hierarchical Carbon Framework with Engineered Dielectricity as an Excellent Microwave Absorber. ACS Applied Materials & Interfaces, 2020, 12, 48140-48149.	4.0	22
101	Galvanic Replacement Reaction Involving Core–Shell Magnetic Chains and Orientationâ€Tunable Microwave Absorption Properties. Small, 2020, 16, e2003502.	5.2	322
102	Domino Effect of Thickness Fluctuation on Subband Structure and Electron Transport within Semiconductor Cascade Structures. ACS Applied Materials & Interfaces, 2020, 12, 41950-41959.	4.0	7
103	Giant Topological Hall Effect and Superstable Spontaneous Skyrmions below 330 K in a Centrosymmetric Complex Noncollinear Ferromagnet NdMn ₂ Ge ₂ . ACS Applied Materials & Interfaces, 2020, 12, 24125-24132.	4.0	17
104	Hollow Nanochains: Hollow Palladiumâ€Gold Nanochains with Periodic Concave Structures as Superior ORR Electrocatalysts and Highly Efficient SERS Substrates (Adv. Energy Mater. 18/2020). Advanced Energy Materials, 2020, 10, 2070082.	10.2	5
105	3D freestanding flower-like nickel-cobalt layered double hydroxides enriched with oxygen vacancies as efficient electrocatalysts for water oxidation. Sustainable Materials and Technologies, 2020, 25, e00170.	1.7	8
106	Covalent Assembly of MoS ₂ Nanosheets with SnS Nanodots as Linkages for Lithium/Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 14621-14627.	7.2	124
107	Covalent Assembly of MoS ₂ Nanosheets with SnS Nanodots as Linkages for Lithium/Sodium″on Batteries. Angewandte Chemie, 2020, 132, 14729-14735.	1.6	26
108	Anomalous Spin Behavior in Fe ₃ GeTe ₂ Driven by Current Pulses. ACS Nano, 2020, 14, 9512-9520.	7.3	17

#	Article	IF	CITATIONS
109	Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance Lithium–Sulfur batteries. Journal of Alloys and Compounds, 2020, 842, 155764.	2.8	22
110	Drawing advanced electromagnetic functional composites with ultra-low filler loading. Chemical Engineering Journal, 2020, 399, 125720.	6.6	13
111	Multidimension ontrollable Synthesis of MOFâ€Đerived Co@Nâ€Đoped Carbon Composite with Magneticâ€Dielectric Synergy toward Strong Microwave Absorption. Small, 2020, 16, e2000158.	5.2	350
112	Engineering Phase Transformation of MoS ₂ /RGO by N-doping as an Excellent Microwave Absorber. ACS Applied Materials & Interfaces, 2020, 12, 16831-16840.	4.0	57
113	Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries. Journal of Materials Chemistry A, 2020, 8, 7828-7835.	5.2	74
114	Hollow Palladiumâ€Gold Nanochains with Periodic Concave Structures as Superior ORR Electrocatalysts and Highly Efficient SERS Substrates. Advanced Energy Materials, 2020, 10, 1904072.	10.2	69
115	Improved microwave absorption performance of a multi-dimensional Fe ₂ O ₃ /CNTCM@CN assembly achieved by enhanced dielectric relaxation. Journal of Materials Chemistry C, 2020, 8, 5715-5726.	2.7	28
116	Magnetized MXene Microspheres with Multiscale Magnetic Coupling and Enhanced Polarized Interfaces for Distinct Microwave Absorption via a Spray-Drying Method. ACS Applied Materials & Interfaces, 2020, 12, 18138-18147.	4.0	108
117	Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Research, 2020, 13, 810-817.	5.8	53
118	Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap. Nano Research, 2020, 13, 1536-1543.	5.8	6
119	Conductive Li _{3.08} Cr _{0.02} Si _{0.09} V _{0.9} O ₄ Anode Material: Novel "Zero‧train―Characteristic and Superior Electrochemical Li ⁺ Storage. Advanced Energy Materials, 2020, 10, 1904267.	10.2	53
120	Dandelion-like carbon nanotube assembly embedded with closely separated Co nanoparticles for high-performance microwave absorption materials. Nanoscale, 2020, 12, 10149-10157.	2.8	56
121	Hollow porous Fe ₂ O ₃ microspheres wrapped by reduced graphene oxides with high-performance microwave absorption. Journal of Materials Chemistry C, 2019, 7, 11167-11176.	2.7	59
122	A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Research, 2019, 12, 2614-2622.	5.8	59
123	Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. Carbon, 2019, 155, 298-308.	5.4	113
124	Boosted Interfacial Polarization from Multishell TiO ₂ @Fe ₃ O ₄ @PPy Heterojunction for Enhanced Microwave Absorption. Small, 2019, 15, e1902885.	5.2	293
125	Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion. Advanced Energy Materials, 2019, 9, 1901667.	10.2	59
126	Visualizing spatial potential and charge distribution in Ru/N-doped carbon electrocatalysts for superior hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18072-18080.	5.2	41

#	Article	IF	CITATIONS
127	Enhanced polarization from flexible hierarchical MnO ₂ arrays on cotton cloth with excellent microwave absorption. Nanoscale, 2019, 11, 13269-13281.	2.8	80
128	Ultrabroad Band Microwave Absorption of Carbonized Waxberry with Hierarchical Structure. Small, 2019, 15, e1902974.	5.2	172
129	Self-Assembly-Magnetized MXene Avoid Dual-Agglomeration with Enhanced Interfaces for Strong Microwave Absorption through a Tunable Electromagnetic Property. ACS Applied Materials & Interfaces, 2019, 11, 44536-44544.	4.0	179
130	Conductive Copper Niobate: Superior Li ⁺ â€Storage Capability and Novel Li ⁺ â€Transport Mechanism. Advanced Energy Materials, 2019, 9, 1902174.	10.2	99
131	Multi-scale magnetic coupling of Fe@SiO ₂ @C–Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale, 2019, 11, 17270-17276.	2.8	68
132	Sn–C and Se–C Co-Bonding SnSe/Few-Layered Graphene Micro–Nano Structure: Route to a Densely Compacted and Durable Anode for Lithium/Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36685-36696.	4.0	83
133	Dynamic visualization of the phase transformation path in LiFePO ₄ during delithiation. Nanoscale, 2019, 11, 17557-17562.	2.8	12
134	Hydrogen peroxide-assisted synthesis of oxygen-doped carbon nitride nanorods for enhanced photocatalytic hydrogen evolution. RSC Advances, 2019, 9, 28421-28431.	1.7	6
135	Dandelion-like Mn/Ni Co-doped CoO/C Hollow Microspheres with Oxygen Vacancies for Advanced Lithium Storage. ACS Nano, 2019, 13, 11921-11934.	7.3	106
136	Electron Holography of Yolk–Shell Fe ₃ O ₄ @mSiO ₂ Microspheres for Use in Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 910-916.	2.4	41
137	Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo ₂ O ₄ nanostructures <i>via</i> a self-assembly process of flake units. Nanoscale, 2019, 11, 2694-2702.	2.8	166
138	Nano-spatially confined and interface-controlled lithiation–delithiation in an <i>in situ</i> formed (SnS–SnS ₂ –S)/FLG composite: a route to an ultrafast and cycle-stable anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15320-15332.	5.2	32
139	Understanding the role of aluminium in determining the surface structure and electrochemical performance of layered cathodes. Nanoscale, 2019, 11, 13007-13016.	2.8	4
140	Two-Dimensional Energy Band Engineering in GaAs/AlGaAs Core–Shell Nanowires by Crystal-Phase Switching for Charge Manipulation. ACS Applied Nano Materials, 2019, 2, 3323-3328.	2.4	0
141	A Flexible Film toward Highâ€Performance Lithium Storage: Designing Nanosheetâ€Assembled Hollow Singleâ€Hole Ni–Co–Mn–O Spheres with Oxygen Vacancy Embedded in 3D Carbon Nanotube/Graphene Network. Small, 2019, 15, e1901343.	5.2	22
142	Heterointerfaceâ€Driven Band Alignment Engineering and its Impact on Macroâ€Performance in Semiconductor Multilayer Nanostructures. Small, 2019, 15, e1900837.	5.2	19
143	Enhanced Microwave Absorption Performance from Magnetic Coupling of Magnetic Nanoparticles Suspended within Hierarchically Tubular Composite. Advanced Functional Materials, 2019, 29, 1901448.	7.8	566
144	Ni <i>_x</i> Mn <i>_y</i> Co <i>_z</i> O Nanowire/CNT Composite Microspheres with 3D Interconnected Conductive Network Structure via Sprayâ€Drying Method: A Highâ€Capacity and Longâ€Cycleâ€Life Anode Material for Lithiumâ€Ion Batteries. Small, 2019, 15, e1900069.	5.2	10

#	Article	IF	CITATIONS
145	Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical ZnO Arrays Vertically Supported on Carbon Cloth. Small, 2019, 15, e1900900.	5.2	205
146	Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 7074-7081.	5.2	48
147	Superior-capacity binder-free anode electrode for lithium-ion batteries: Co _x Mn _y Ni _z O nanosheets with metal/oxygen vacancies directly formed on Cu foil. Nanoscale, 2019, 11, 5080-5093.	2.8	13
148	Highâ€Performance Microwave Absorption of MOFâ€Derived Coreâ€5hell Co@Nâ€doped Carbon Anchored on Reduced Graphene Oxide. ChemNanoMat, 2019, 5, 558-565.	1.5	53
149	Ferromagnetic Co ₂₀ Ni ₈₀ nanoparticles encapsulated inside reduced graphene oxide layers with superior microwave absorption performance. Journal of Materials Chemistry C, 2019, 7, 2943-2953.	2.7	66
150	Control of electron tunnelling by fine band engineering of semiconductor potential barriers. Nanoscale, 2019, 11, 21376-21385.	2.8	3
151	Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs <i>via</i> confined space synthesis. Nanoscale, 2019, 11, 22539-22549.	2.8	41
152	Synthesis of uniform ordered mesoporous TiO ₂ microspheres with controllable phase junctions for efficient solar water splitting. Chemical Science, 2019, 10, 1664-1670.	3.7	131
153	Copper- and Cobalt-Codoped CeO ₂ Nanospheres with Abundant Oxygen Vacancies as Highly Efficient Electrocatalysts for Dual-Mode Electrochemical Sensing of MicroRNA. Analytical Chemistry, 2019, 91, 2659-2666.	3.2	55
154	Yolk–Shell Fe/Fe ₄ N@Pd/C Magnetic Nanocomposite as an Efficient Recyclable ORR Electrocatalyst and SERS Substrate. Small, 2019, 15, e1805032.	5.2	88
155	Polyionic Resin Supported Pd/Fe ₂ O ₃ Nanohybrids for Catalytic Hydrodehalogenation: Improved and Versatile Remediation for Toxic Pollutants. Industrial & Engineering Chemistry Research, 2019, 58, 2159-2169.	1.8	11
156	Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. Nano Energy, 2019, 57, 34-40.	8.2	104
157	Insights into the micro magnetic loss mechanism of microwave absorption by off-axis electron holography. Journal of Magnetism and Magnetic Materials, 2019, 475, 24-29.	1.0	16
158	Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chemistry of Materials, 2018, 30, 1575-1584.	3.2	32
159	Microstructure research for ferroelectric origin in the strained Hf0.5Zr0.5O2 thin film via geometric phase analysis. Applied Physics Letters, 2018, 112, .	1.5	7
160	Hierarchical Fe ₂ O ₃ @C@MnO ₂ @C Multishell Nanocomposites for High Performance Lithium Ion Batteries and Catalysts. Langmuir, 2018, 34, 5225-5233.	1.6	28
161	Excellent NiO–Ni Nanoplate Microwave Absorber via Pinning Effect of Antiferromagnetic–Ferromagnetic Interface. ACS Applied Materials & Interfaces, 2018, 10, 15104-15111.	4.0	42
162	The underlying micro-mechanism of performance enhancement of non-polar <i>n</i> -ZnO/ <i>p</i> -AlGaN ultraviolet light emitting diode with <i>i</i> -ZnO inserted layer. Applied Physics Letters, 2018, 112, .	1.5	14

#	Article	IF	CITATIONS
163	Doping of Ni and Zn Elements in MnCO ₃ : Highâ€Power Anode Material for Lithium–Ion Batteries. Small, 2018, 14, 1702574.	5.2	25
164	Two hybrid Au-ZnO aggregates with different hierarchical structures: A comparable study in photocatalysis. Journal of Colloid and Interface Science, 2018, 509, 58-67.	5.0	24
165	Li–S Batteries: Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralongâ€Life Li–S Batteries (Adv. Energy Mater. 35/2018). Advanced Energy Materials, 2018, 8, 1870152.	10.2	5
166	Preparation of Carbon Nanotube Coated Li ₄ Ti ₅ O ₁₂ Nanosheets Heterostructure as Ultrastable Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6352-6360.	2.5	17
167	Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralongâ€Life Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802431.	10.2	76
168	Hollow TiNb ₂ O ₇ @C Spheres with Superior Rate Capability and Excellent Cycle Performance as Anode Material for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 12932-12937.	1.7	43
169	Thermal effects on current-related skyrmion formation in a nanobelt. Applied Physics Letters, 2018, 112, .	1.5	11
170	"Matryoshka Doll―Like CeO ₂ Microspheres with Hierarchical Structure To Achieve Significantly Enhanced Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2018, 10, 27540-27547.	4.0	87
171	Flexible Grapheneâ€Wrapped Carbon Nanotube/Graphene@MnO ₂ 3D Multilevel Porous Film for Highâ€Performance Lithiumâ€ion Batteries. Small, 2018, 14, e1801007.	5.2	63
172	Janus-like Fe ₃ O ₄ /PDA vesicles with broadening microwave absorption bandwidth. Journal of Materials Chemistry C, 2018, 6, 7790-7796.	2.7	46
173	Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet. Physical Review Letters, 2018, 120, 197203.	2.9	88
174	Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction. Journal of Materials Chemistry A, 2018, 6, 21313-21319.	5.2	34
175	Enhanced Polarization from Hollow Cube-like ZnSnO ₃ Wrapped by Multiwalled Carbon Nanotubes: As a Lightweight and High-Performance Microwave Absorber. ACS Applied Materials & Interfaces, 2018, 10, 22602-22610.	4.0	163
176	Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials, 2017, 124, 35-46.	5.7	82
177	Aspect ratio tuned red-shift of photoluminescence emission of PbSe nanorods investigated by electron holography. Journal of Colloid and Interface Science, 2017, 493, 385-392.	5.0	4
178	Facile preparation of 3D hierarchical coaxial-cable-like Ni-CNTs@beta-(Ni, Co) binary hydroxides for supercapacitors with ultrahigh specific capacitance. Journal of Colloid and Interface Science, 2017, 502, 33-43.	5.0	7
179	Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrods array and photo-optimized surface-enhanced Raman scattering. Applied Catalysis B: Environmental, 2017, 217, 37-47.	10.8	27
180	Insight into the atomic structure of Li ₂ MnO ₃ in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 11214-11223.	5.2	49

#	Article	IF	CITATIONS
181	Simultaneous Ni Doping at Atom Scale in Ceria and Assembling into Well-Defined Lotuslike Structure for Enhanced Catalytic Performance. ACS Applied Materials & Interfaces, 2017, 9, 16243-16251.	4.0	30
182	High-temperature annealing of an iron microplate with excellent microwave absorption performance and its direct micromagnetic analysis by electron holography and Lorentz microscopy. Journal of Materials Chemistry C, 2017, 5, 6047-6053.	2.7	41
183	Controllable Fabrication of Two-Dimensional Patterned VO ₂ Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. ACS Nano, 2017, 11, 7542-7551.	7.3	152
184	Broadening microwave absorption via a multi-domain structure. APL Materials, 2017, 5, .	2.2	35
185	Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet. Nano Letters, 2017, 17, 2921-2927.	4.5	39
186	Controllable one-pot synthesis of FeSe2 nanooctahedra embedded microtubes by a sacrificial self-template method. New Journal of Chemistry, 2017, 41, 423-426.	1.4	3
187	Tailorable coaxial carbon nanocables with high storage capabilities. Journal of Materials Chemistry A, 2017, 5, 22125-22130.	5.2	3
188	Quantum efficiency optimization by maximizing wave function overlap in type-II superlattice photodetectors. Nanoscale, 2017, 9, 11833-11840.	2.8	8
189	Atomic Mechanism of Interfacial-Controlled Quantum Efficiency and Charge Migration in InAs/GaSb Superlattice. ACS Applied Materials & Interfaces, 2017, 9, 26642-26647.	4.0	12
190	The Deformations of Carbon Nanotubes under Cutting. ACS Nano, 2017, 11, 8464-8470.	7.3	20
191	Insight into the split and asymmetry of charge distribution in biased M-structure superlattice. Applied Physics Letters, 2017, 111, .	1.5	3
192	Synthesis and thermoelectric properties of defect-containing PbSe–PbTe heterojunction nanostructures. RSC Advances, 2017, 7, 53855-53860.	1.7	4
193	Self-Assembled 3D Hierarchical Copper Hydroxyphosphate Modified by the Oxidation of Copper Foil as a Recyclable, Wide Wavelength Photocatalyst. Langmuir, 2017, 33, 13649-13656.	1.6	15
194	Nanoporous TiNb ₂ O ₇ /C Composite Microspheres with Three-Dimensional Conductive Network for Long-Cycle-Life and High-Rate-Capability Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41258-41264.	4.0	57
195	Boosting oxygen reduction activity of spinel CoFe 2 O 4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Science Bulletin, 2017, 62, 1365-1372.	4.3	18
196	Dipolarâ€Distribution Cavity γâ€Fe ₂ O ₃ @C@αâ€MnO ₂ Nanospindle with Broadened Microwave Absorption Bandwidth by Chemically Etching. Small, 2017, 13, 1602779.	¹ 5.2	198
197	Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine. Journal of Colloid and Interface Science, 2017, 490, 23-28.	5.0	23
198	Tunable Microwave Absorption Frequency by Aspect Ratio of Hollow Polydopamine@α-MnO ₂ Microspindles Studied by Electron Holography. ACS Applied Materials & Interfaces, 2016, 8, 9782-9789.	4.0	159

#	Article	IF	CITATIONS
199	Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4918-4923.	3.3	125
200	Dual-ligand mediated one-pot self-assembly of Cu/ZnO core/shell structures for enhanced microwave absorption. RSC Advances, 2016, 6, 41724-41733.	1.7	21
201	Fabrication of hierarchical TiO ₂ coated Co ₂₀ Ni ₈₀ particles with tunable core sizes as high-performance wide-band microwave absorbers. Physical Chemistry Chemical Physics, 2016, 18, 26712-26718.	1.3	28
202	Controllable synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods and the distribution of electric property by off-axis electron holography. Nano Research, 2016, 9, 2561-2571.	5.8	11
203	Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Physical Review B, 2016, 93, .	1.1	43
204	The role of graphene in nano-layered structure and long-term cycling stability of Mn _x Co _y Ni _z CO ₃ as an anode material for lithium-ion batteries. RSC Advances, 2016, 6, 105252-105261.	1.7	7
205	Alcohol-Tolerant Platinum Electrocatalyst for Oxygen Reduction by Encapsulating Platinum Nanoparticles inside Nitrogen-Doped Carbon Nanocages. ACS Applied Materials & Interfaces, 2016, 8, 16664-16669.	4.0	28
206	CoNi@SiO ₂ @TiO ₂ and CoNi@Air@TiO ₂ Microspheres with Strong Wideband Microwave Absorption. Advanced Materials, 2016, 28, 486-490.	11.1	1,506
207	Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy and Environmental Science, 2016, 9, 2053-2060.	15.6	212
208	Radially oriented mesoporous TiO ₂ microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices. Science Advances, 2015, 1, e1500166.	4.7	139
209	Designed Fabrication and Characterization of Three-Dimensionally Ordered Arrays of Core–Shell Magnetic Mesoporous Carbon Microspheres. ACS Applied Materials & Interfaces, 2015, 7, 5312-5319.	4.0	115
210	Insights into Size-Dominant Magnetic Microwave Absorption Properties of CoNi Microflowers via Off-Axis Electron Holography. ACS Applied Materials & Interfaces, 2015, 7, 4233-4240.	4.0	180
211	Alloyed Co–Mo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. ACS Catalysis, 2015, 5, 1857-1862.	5.5	172
212	Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy, 2015, 12, 657-665.	8.2	231
213	Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nature Communications, 2015, 6, 7637.	5.8	83
214	<italic>In Situ</italic> Observation of Domain Wall Pinning in Sm(Co,Fe,Cu,Zr) _{<italic>z</italic>} Magnet by Lorentz Microscopy. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	8
215	Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nature Communications, 2015, 6, 8504.	5.8	199
216	Porous Au–Ag Alloy Particles Inlaid AgCl Membranes As Versatile Plasmonic Catalytic Interfaces with Simultaneous, in Situ SERS Monitoring. ACS Applied Materials & Interfaces, 2015, 7, 18491-18500.	4.0	51

#	Article	IF	CITATIONS
217	Inheritance of Crystallographic Orientation during Lithiation/Delithiation Processes of Single-Crystal α-Fe ₂ O ₃ Nanocubes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 24191-24196.	4.0	33
218	Crystal defect-mediated band-gap engineering: a new strategy for tuning the optical properties of Ag ₂ Se quantum dots toward enhanced hydrogen evolution performance. Journal of Materials Chemistry A, 2015, 3, 20051-20055.	5.2	26
219	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	5.3	74
220	Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Materials, 2015, 7, e221.	3.8	68
221	Dependency of magnetic microwave absorption on surface architecture of Co ₂₀ Ni ₈₀ hierarchical structures studied by electron holography. Nanoscale, 2015, 7, 1736-1743.	2.8	184
222	Hierarchical magnetic core-shell nanostructures for microwave absorption: Synthesis, microstructure and property studies. Science China Chemistry, 2014, 57, 3-12.	4.2	27
223	Ultraviolet emission of amorphous SiO2+x nanowires with connected bead-chain morphology. RSC Advances, 2014, 4, 11493-11498.	1.7	2
224	Yolk–shell Fe ₃ O ₄ @ZrO ₂ prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorption. Journal of Materials Chemistry C, 2014, 2, 7275-7283.	2.7	137
225	Ordered mesoporous CoFe2O4 nanoparticles: molten-salt-assisted rapid nanocasting synthesis and the effects of calcining heating rate. New Journal of Chemistry, 2014, 38, 3193.	1.4	18
226	A facile phase transformation method for the preparation of 3D flower-like β-Ni(OH) ₂ /GO/CNTs composite with excellent supercapacitor performance. Journal of Materials Chemistry A, 2014, 2, 12692-12696.	5.2	76
227	Modulating the Li ⁺ /Ni ²⁺ replacement and electrochemical performance optimizing of layered lithium-rich Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ by minor Co dopant. Journal of Materials Chemistry A, 2014, 2, 9656-9665.	5.2	34
228	Paramecium-like α-MnO ₂ hierarchical hollow structures with enhanced electrochemical capacitance prepared by a facile dopamine carbon-source assisted shell-swelling etching method. Journal of Materials Chemistry A, 2014, 2, 20729-20738.	5.2	33
229	Crossâ€6tacking Aligned Carbonâ€Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities. Advanced Materials, 2014, 26, 8120-8125.	11.1	819
230	Predominant growth orientation of Li _{1.2} (Mn _{0.4} 0.4)O ₂ cathode materials produced by the NaOH compound molten salt method and their enhanced electrochemical performance. Journal of Materials Chemistry A. 2014, 2, 15200.	5.2	17
231	Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe ₃ O ₄ cores and hierarchical CuSiO ₃ shells. Nanoscale, 2014, 6, 5782-5790.	2.8	126
232	Ordered Macroâ€∤Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Waterâ€Splitting. Advanced Energy Materials, 2014, 4, 1301725.	10.2	48
233	Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries. Nano Research, 2014, 7, 1043-1053.	5.8	61
234	Direct evidence of antisite defects in LiFe0.5Mn0.5PO4via atomic-level HAADF-EELS. Journal of Materials Chemistry A, 2013, 1, 8775.	5.2	23

#	Article	IF	CITATIONS
235	Double-Shelled Yolk–Shell Microspheres with Fe ₃ O ₄ Cores and SnO ₂ Double Shells as High-Performance Microwave Absorbers. Journal of Physical Chemistry C, 2013, 117, 489-495.	1.5	160
236	Synthesis and Microwave Absorption Properties of Yolk–Shell Microspheres with Magnetic Iron Oxide Cores and Hierarchical Copper Silicate Shells. ACS Applied Materials & Interfaces, 2013, 5, 2503-2509.	4.0	185
237	Oneâ€Step Fabrication of Ultrathin Porous Nickel Hydroxideâ€Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Advanced Energy Materials, 2013, 3, 1636-1646.	10.2	342
238	Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior. Nano Research, 2013, 6, 275-285.	5.8	25
239	Hierarchical Fe ₃ O ₄ @TiO ₂ Yolk–Shell Microspheres with Enhanced Microwaveâ€Absorption Properties. Chemistry - A European Journal, 2013, 19, 6746-6752.	1.7	194
240	Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. Chemistry of Materials, 2013, 25, 106-112.	3.2	277
241	Ultrathin BaTiO ₃ Nanowires with High Aspect Ratio: A Simple One-Step Hydrothermal Synthesis and Their Strong Microwave Absorption. ACS Applied Materials & Interfaces, 2013, 5, 7146-7151.	4.0	151
242	Hierarchical magnetic yolk–shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. Journal of Materials Chemistry, 2012, 22, 9277.	6.7	81
243	General synthesis of xLi2MnO3·(1 â^' x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. Journal of Materials Chemistry, 2012, 22, 25380.	6.7	115
244	Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe ₃ O ₄ Cores and Anatase TiO ₂ Shells. Small, 2012, 8, 1214-1221.	5.2	730
245	Direct imaging of the layer-by-layer growth and rod-unit repairing defects of mesoporous silica SBA-15 by cryo-SEM. Journal of Materials Chemistry, 2011, 21, 17371.	6.7	18
246	Synthesis of Au and Au–CuO cubic microcages via an in situ sacrificial template approach. Journal of Materials Chemistry, 2011, 21, 3960.	6.7	64
247	Ligandâ€Assisted Assembly Approach to Synthesize Largeâ€Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework. Advanced Energy Materials, 2011, 1, 241-248.	10.2	139
248	Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. Journal of Materials Chemistry, 2009, 19, 6706.	6.7	174
249	Electron energy-loss spectroscopy andab initioelectronic structure of the LaOFeP superconductor. Physical Review B, 2008, 77, .	1.1	19
250	Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes. Nanotechnology, 2007, 18, 355705.	1.3	27
251	Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in type-II superlattices. Nano Research, 0, , 1.	5.8	2
252	Fine modulation of the energy band strategy to control the carrier confinement capability of digital alloys. Nanotechnology, 0, , .	1.3	0