Renchao Che

List of Publications by Citations

Source: https://exaly.com/author-pdf/987915/renchao-che-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58 103 241 12,234 h-index g-index citations papers 16,566 11 252 7.1 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
241	CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption. <i>Advanced Materials</i> , 2016 , 28, 486-90	24	1053
240	Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells. <i>Small</i> , 2012 , 8, 1214-21	11	621
239	Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. <i>Advanced Materials</i> , 2014 , 26, 8120-5	24	548
238	Enhanced Microwave Absorption Performance from Magnetic Coupling of Magnetic Nanoparticles Suspended within Hierarchically Tubular Composite. <i>Advanced Functional Materials</i> , 2019 , 29, 1901448	15.6	321
237	One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. <i>Advanced Energy Materials</i> , 2013 , 3, 1636-1646	21.8	304
236	Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. <i>Chemistry of Materials</i> , 2013 , 25, 106-112	9.6	240
235	MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. <i>Chemical Engineering Journal</i> , 2020 , 383, 123099	14.7	207
234	Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithiumBulfur batteries. <i>Nano Energy</i> , 2015 , 12, 657-665	17.1	196
233	Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. <i>Carbon</i> , 2020 , 157, 130-139	10.4	186
232	Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. <i>Energy and Environmental Science</i> , 2016 , 9, 2053-2060	35.4	180
231	Hollow Engineering to Co@N-Doped Carbon Nanocages via Synergistic Protecting-Etching Strategy for Ultrahigh Microwave Absorption. <i>Advanced Functional Materials</i> , 2021 , 31, 2102812	15.6	175
230	Multidimension-Controllable Synthesis of MOF-Derived Co@N-Doped Carbon Composite with Magnetic-Dielectric Synergy toward Strong Microwave Absorption. <i>Small</i> , 2020 , 16, e2000158	11	170
229	Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 6746-52	4.8	169
228	Boosted Interfacial Polarization from Multishell TiO @Fe O @PPy Heterojunction for Enhanced Microwave Absorption. <i>Small</i> , 2019 , 15, e1902885	11	167
227	Dipolar-Distribution Cavity Fe O @C@FMnO Nanospindle with Broadened Microwave Absorption Bandwidth by Chemically Etching. <i>Small</i> , 2017 , 13, 1602779	11	163
226	Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6706		163
225	Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. <i>ACS Applied Materials & District Action</i> 2013, 5, 2503	- 8 -5	162

224	Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. <i>Nature Communications</i> , 2015 , 6, 8504	17.4	159	
223	Double-Shelled YolkBhell Microspheres with Fe3O4 Cores and SnO2 Double Shells as High-Performance Microwave Absorbers. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 489-495	3.8	150	
222	Alloyed CoMo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. <i>ACS Catalysis</i> , 2015 , 5, 1857-1862	13.1	149	
221	Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. <i>Nanoscale</i> , 2015 , 7, 1736-43	7.7	144	
22 0	Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. <i>ACS Applied Materials & District App</i>	9.5	142	
219	Tunable Microwave Absorption Frequency by Aspect Ratio of Hollow Polydopamine@\(\text{MnO2} \) Microspindles Studied by Electron Holography. ACS Applied Materials & amp; Interfaces, 2016 , 8, 9782-9	9.5	136	
218	Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical ZnO Arrays Vertically Supported on Carbon Cloth. <i>Small</i> , 2019 , 15, e1900900	11	133	
217	Galvanic Replacement Reaction Involving Core-Shell Magnetic Chains and Orientation-Tunable Microwave Absorption Properties. <i>Small</i> , 2020 , 16, e2003502	11	129	
216	Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Applied Materials & amp; Interfaces, 2013, 5, 7146-51	9.5	124	
215	Ligand-Assisted Assembly Approach to Synthesize Large-Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework. <i>Advanced Energy Materials</i> , 2011 , 1, 241-248	21.8	123	
214	Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2123-2134	7.1	119	
213	Enhanced Polarization from Hollow Cube-like ZnSnO Wrapped by Multiwalled Carbon Nanotubes: As a Lightweight and High-Performance Microwave Absorber. <i>ACS Applied Materials & Discounty of the Interfaces</i> , 2018 , 10, 22602-22610	9.5	118	
212	Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. <i>Nanoscale</i> , 2014 , 6, 5782-90	7.7	113	
211	YolkEhell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted solgel method for high temperature stable microwave absorption. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7275-7283	7.1	109	
21 0	Controllable Fabrication of Two-Dimensional Patterned VO Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. <i>ACS Nano</i> , 2017 , 11, 7542-7551	16.7	107	
209	Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices. <i>Science Advances</i> , 2015 , 1, e1500166	14.3	106	
208	General synthesis of xLi2MnO3[[1 [k])LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 25380		106	
207	Morphology-controlled synthesis and excellent microwave absorption performance of ZnCoO nanostructures via a self-assembly process of flake units. <i>Nanoscale</i> , 2019 , 11, 2694-2702	7.7	103	

206	Plasma-induced FeSiAl@Al2O3@SiO2 coreBhell structure for exceptional microwave absorption and anti-oxidation at high temperature. <i>Chemical Engineering Journal</i> , 2020 , 384, 123371	14.7	102
205	Self-Assembly-Magnetized MXene Avoid Dual-Agglomeration with Enhanced Interfaces for Strong Microwave Absorption through a Tunable Electromagnetic Property. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 44536-44544	9.5	97
204	MOF-Derived NiCo@Carbon with Tunable Nano-Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber. <i>Nano-Micro Letters</i> , 2020 , 12, 150	19.5	95
203	Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. <i>ACS Applied Materials & Designed Material</i>	9.5	94
202	Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4918-23	11.5	94
201	Ultrabroad Band Microwave Absorption of Carbonized Waxberry with Hierarchical Structure. <i>Small</i> , 2019 , 15, e1902974	11	92
200	Synthesis of uniform ordered mesoporous TiO microspheres with controllable phase junctions for efficient solar water splitting. <i>Chemical Science</i> , 2019 , 10, 1664-1670	9.4	82
199	3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. <i>Chemical Engineering Journal</i> , 2020 , 379, 122241	14.7	79
198	Hierarchical magnetic yolk hell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9277		76
197	Dandelion-like Mn/Ni Co-doped CoO/C Hollow Microspheres with Oxygen Vacancies for Advanced Lithium Storage. <i>ACS Nano</i> , 2019 , 13, 11921-11934	16.7	74
196	Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. <i>Nano Energy</i> , 2019 , 57, 34-40	17.1	73
195	Covalent Assembly of MoS Nanosheets with SnS Nanodots as Linkages for Lithium/Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14621-14627	16.4	71
194	Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. <i>Nature Communications</i> , 2015 , 6, 7637	17.4	68
193	Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. <i>Carbon</i> , 2019 , 155, 298-308	10.4	66
192	Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. <i>Biomaterials</i> , 2017 , 124, 35-46	15.6	65
191	"Matryoshka Doll"-Like CeO Microspheres with Hierarchical Structure To Achieve Significantly Enhanced Microwave Absorption Performance. <i>ACS Applied Materials & Description Structure</i> (10) 27540-	-27547	65
190	A facile phase transformation method for the preparation of 3D flower-like ENi(OH)2/GO/CNTs composite with excellent supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12692-	12696	65
189	Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 505-513	8.7	65

(2021-2018)

188	Nickel©obalt Double Hydroxide as a Multifunctional Mediator for Ultrahigh-Rate and Ultralong-Life Liß Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1802431	21.8	64
187	Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. <i>ACS Central Science</i> , 2015 , 1, 400-8	16.8	63
186	Synthesis of Au and AulīuO cubic microcages via an in situ sacrificial template approach. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3960		62
185	Yolk-Shell Fe/Fe N@Pd/C Magnetic Nanocomposite as an Efficient Recyclable ORR Electrocatalyst and SERS Substrate. <i>Small</i> , 2019 , 15, e1805032	11	61
184	Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Materials, 2015, 7, e221-e22	210.3	60
183	Conductive Copper Niobate: Superior Li+-Storage Capability and Novel Li+-Transport Mechanism. <i>Advanced Energy Materials</i> , 2019 , 9, 1902174	21.8	56
182	Magnetized MXene Microspheres with Multiscale Magnetic Coupling and Enhanced Polarized Interfaces for Distinct Microwave Absorption via a Spray-Drying Method. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 18138-18147	9.5	56
181	Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries. <i>Nano Research</i> , 2014 , 7, 1043-1053	10	52
180	Enhanced polarization from flexible hierarchical MnO arrays on cotton cloth with excellent microwave absorption. <i>Nanoscale</i> , 2019 , 11, 13269-13281	7.7	51
179	Ferromagnetic Co20Ni80 nanoparticles encapsulated inside reduced graphene oxide layers with superior microwave absorption performance. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2943-2953	7.1	51
178	Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet. <i>Physical Review Letters</i> , 2018 , 120, 197203	7.4	50
177	Flexible Graphene-Wrapped Carbon Nanotube/Graphene@MnO 3D Multilevel Porous Film for High-Performance Lithium-Ion Batteries. <i>Small</i> , 2018 , 14, e1801007	11	49
176	Interfacial Charge Field in Hierarchical YolkBhell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion. <i>Advanced Energy Materials</i> , 2019 , 9, 1901667	21.8	47
175	Nanoporous TiNbO/C Composite Microspheres with Three-Dimensional Conductive Network for Long-Cycle-Life and High-Rate-Capability Anode Materials for Lithium-Ion Batteries. <i>ACS Applied Materials & M</i>	9.5	46
174	MOF Induces 2D GO to Assemble into 3D Accordion-Like Composites for Tunable and Optimized Microwave Absorption Performance. <i>Small</i> , 2020 , 16, e2003905	11	46
173	Multi-scale magnetic coupling of Fe@SiO@C-Ni yolk@triple-shell microspheres for broadband microwave absorption. <i>Nanoscale</i> , 2019 , 11, 17270-17276	7.7	44
172	Porous Au-Ag Alloy Particles Inlaid AgCl Membranes As Versatile Plasmonic Catalytic Interfaces with Simultaneous, in Situ SERS Monitoring. <i>ACS Applied Materials & District Materials</i> (2015), 7, 18491-500	9.5	43
171	Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within "Tubes on Rods" Matrix Toward Enhanced Microwave Absorption. <i>Nano-Micro Letters</i> , 2021 , 13, 47	19.5	43

170	Ordered Macro-/Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Water-Splitting. <i>Advanced Energy Materials</i> , 2014 , 4, 1301725	21.8	42
169	Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. <i>Applied Catalysis B: Environmental</i> , 2020 , 262, 118298	21.8	42
168	Hollow Palladium-Gold Nanochains with Periodic Concave Structures as Superior ORR Electrocatalysts and Highly Efficient SERS Substrates. <i>Advanced Energy Materials</i> , 2020 , 10, 1904072	21.8	41
167	High-Performance Microwave Absorption of MOF-Derived Core-Shell Co@N-doped Carbon Anchored on Reduced Graphene Oxide. <i>ChemNanoMat</i> , 2019 , 5, 558-565	3.5	40
166	Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7074-7081	13	38
165	Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high-performance microwave absorption. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 11167-11176	7.1	37
164	Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. <i>Advanced Materials</i> , 2021 , e2107538	24	37
163	MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. <i>Carbon</i> , 2021 , 175, 509-518	10.4	37
162	Sn-C and Se-C Co-Bonding SnSe/Few-Layered Graphene Micro-Nano Structure: Route to a Densely Compacted and Durable Anode for Lithium/Sodium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 36685-36696	9.5	36
161	Engineering Phase Transformation of MoS/RGO by N-doping as an Excellent Microwave Absorber. <i>ACS Applied Materials & District Action (Material & Material </i>	9.5	36
160	Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. <i>Applied Surface Science</i> , 2021 , 538, 148051	6.7	36
159	Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. <i>Nanoscale</i> , 2021 , 13, 2136-2156	7.7	35
158	Insight into the atomic structure of Li2MnO3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11214-11223	13	34
157	Advances in electromagnetic shielding properties of composite foams. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 8896-8949	13	34
156	Hollow TiNb O @C Spheres with Superior Rate Capability and Excellent Cycle Performance as Anode Material for Lithium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2018 , 24, 12932-12937	4.8	34
155	Emergence of skyrmions from rich parent phases in the molybdenum nitrides. <i>Physical Review B</i> , 2016 , 93,	3.3	33
154	Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. <i>Carbon</i> , 2021 , 172, 516-528	10.4	33
153	Copper- and Cobalt-Codoped CeO Nanospheres with Abundant Oxygen Vacancies as Highly Efficient Electrocatalysts for Dual-Mode Electrochemical Sensing of MicroRNA. <i>Analytical Chemistry</i> , 2019 , 91, 2659-2666	7.8	32

152	Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet. <i>Nano Letters</i> , 2017 , 17, 2921-2927	11.5	31
151	High-temperature annealing of an iron microplate with excellent microwave absorption performance and its direct micromagnetic analysis by electron holography and Lorentz microscopy. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6047-6053	7.1	30
150	Self-transforming ultrathin £Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. <i>Nano Research</i> , 2020 , 13, 810-817	10	30
149	Visualizing spatial potential and charge distribution in Ru/N-doped carbon electrocatalysts for superior hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18072-18080	13	30
148	Modulating the Li+/Ni2+ replacement and electrochemical performance optimizing of layered lithium-rich Li1.2Ni0.2Mn0.6O2 by minor Co dopant. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9656-966	5 ¹³	30
147	Paramecium-like EMnO2 hierarchical hollow structures with enhanced electrochemical capacitance prepared by a facile dopamine carbon-source assisted shell-swelling etching method. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20729-20738	13	30
146	High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in TiCT MXene@Ni Microspheres <i>ACS Nano</i> , 2021 ,	16.7	30
145	Electron Holography of YolkBhell Fe3O4@mSiO2 Microspheres for Use in Microwave Absorption. <i>ACS Applied Nano Materials</i> , 2019 , 2, 910-916	5.6	29
144	Janus-like Fe3O4/PDA vesicles with broadening microwave absorption bandwidth. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7790-7796	7.1	29
143	Initiating VB-Group Laminated NbS2 Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48 GHz through Phase Engineering Modulation. <i>Advanced Functional Materials</i> , 2108194	15.6	29
142	Single Zinc Atoms Anchored on MOF-Derived N-Doped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. <i>Small</i> , 2021 , 17, e2101416	11	29
141	Dandelion-like carbon nanotube assembly embedded with closely separated Co nanoparticles for high-performance microwave absorption materials. <i>Nanoscale</i> , 2020 , 12, 10149-10157	7.7	29
140	Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. <i>Chemistry of Materials</i> , 2018 , 30, 1575-1584	9.6	28
139	3D conductive network wrapped CeO2-x Yolk@Shell hybrid microspheres for selective-frequency microwave absorption. <i>Carbon</i> , 2020 , 162, 86-94	10.4	28
138	Excellent NiO-Ni Nanoplate Microwave Absorber via Pinning Effect of Antiferromagnetic-Ferromagnetic Interface. ACS Applied Materials & amp; Interfaces, 2018, 10, 15104-15	P19	27
137	A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. <i>Nano Research</i> , 2019 , 12, 2614-2622	10	27
136	Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis. <i>Nano Research</i> , 2020 , 13, 437-446	10	27
135	Inheritance of Crystallographic Orientation during Lithiation/Delithiation Processes of Single-Crystal #e2O3 Nanocubes in Lithium-Ion Batteries. <i>ACS Applied Materials & Distriction</i> (2015), 7, 24191-6	9.5	26

134	Conductive Li3.08Cr0.02Si0.09V0.9O4 Anode Material: Novel Zero-Strain Characteristic and Superior Electrochemical Li+ Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 1904267	21.8	26
133	Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes. <i>Nanotechnology</i> , 2007 , 18, 355705	3.4	25
132	Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs via confined space synthesis. <i>Nanoscale</i> , 2019 , 11, 22539-22549	7.7	25
131	Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. <i>Carbon</i> , 2021 , 172, 15-25	10.4	25
130	3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization. <i>Nano-Micro Letters</i> , 2021 , 13, 157	19.5	25
129	Nano-spatially confined and interface-controlled lithiation lelithiation in an in situ formed (SnSBnS2B)/FLG composite: a route to an ultrafast and cycle-stable anode for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15320-15332	13	24
128	Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7828-7835	13	24
127	Hierarchical magnetic core-shell nanostructures for microwave absorption: Synthesis, microstructure and property studies. <i>Science China Chemistry</i> , 2014 , 57, 3-12	7.9	24
126	Fabrication of hierarchical TiO coated CoNi particles with tunable core sizes as high-performance wide-band microwave absorbers. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 26712-26718	3.6	24
125	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 50793-50802	9.5	23
124	In-situ electrochemical pretreatment of hierarchical NiS-based electrocatalyst towards promoted hydrogen evolution reaction with low overpotential. <i>Journal of Colloid and Interface Science</i> , 2020 , 559, 282-290	9.3	23
123	Simultaneous Ni Doping at Atom Scale in Ceria and Assembling into Well-Defined Lotuslike Structure for Enhanced Catalytic Performance. <i>ACS Applied Materials & Description</i> , 9, 16243-1	<i>6</i> 2§1	22
122	Two hybrid Au-ZnO aggregates with different hierarchical structures: A comparable study in photocatalysis. <i>Journal of Colloid and Interface Science</i> , 2018 , 509, 58-67	9.3	22
121	Alcohol-Tolerant Platinum Electrocatalyst for Oxygen Reduction by Encapsulating Platinum Nanoparticles inside Nitrogen-Doped Carbon Nanocages. <i>ACS Applied Materials & Camp; Interfaces</i> , 2016 , 8, 16664-9	9.5	22
120	Interfacial optimization of PtNi octahedrons@Ti3C2MXene with enhanced alkaline hydrogen evolution activity and stability. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 120100	21.8	21
119	Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrods array and photo-optimized surface-enhanced Raman scattering. <i>Applied Catalysis B: Environmental</i> , 2017 , 217, 37-	47 ^{2.1.8}	20
118	Broadening microwave absorption via a multi-domain structure. APL Materials, 2017, 5, 046104	5.7	20
117	Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. <i>Journal of Alloys and Compounds</i> , 2021 , 869, 159365	5.7	20

116	Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption. <i>Chemical Engineering Journal</i> , 2021 , 419, 130020	7	20
115	Interfacial charge redistribution in interconnected network of Ni2Pto2P boosting electrocatalytic hydrogen evolution in both acidic and alkaline conditions. <i>Chemical Engineering Journal</i> , 2021 , 424, 130444	7	20
114	Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21313-21319		19
113	Direct evidence of antisite defects in LiFe0.5Mn0.5PO4via atomic-level HAADF-EELS. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8775		19
112	Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior. <i>Nano Research</i> , 2013 , 6, 275-285		19
111	Electron energy-loss spectroscopy and ab initio electronic structure of the LaOFeP superconductor. Physical Review B, 2008, 77, 3-3		19
110	Hierarchical FeO@C@MnO@C Multishell Nanocomposites for High Performance Lithium Ion Batteries and Catalysts. <i>Langmuir</i> , 2018 , 34, 5225-5233		18
109	Doping of Ni and Zn Elements in MnCO : High-Power Anode Material for Lithium-Ion Batteries. Small, 2018, 14, 1702574		18
108	In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. <i>Nano Research</i> , 2020 , 13, 72-78		18
107	Excellent microwave absorbing properties of ZnO/ZnFe2O4/Fe core-shell microrods prepared by a rapid microwave-assisted hydrothermal-chemical vapor decomposition method. <i>Applied Surface</i> 6.7 <i>Science</i> , 2020 , 531, 147353		18
106	Dual-ligand mediated one-pot self-assembly of Cu/ZnO core/shell structures for enhanced microwave absorption. <i>RSC Advances</i> , 2016 , 6, 41724-41733		18
105	A Flexible Film toward High-Performance Lithium Storage: Designing Nanosheet-Assembled Hollow Single-Hole Ni-Co-Mn-O Spheres with Oxygen Vacancy Embedded in 3D Carbon 11 Nanotube/Graphene Network. <i>Small</i> , 2019 , 15, e1901343		17
104	Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber. <i>Carbon</i> , 2021 , 175, 499-508	4	17
103	Confined Magnetic-Dielectric Balance Boosted Electromagnetic Wave Absorption. <i>Small</i> , 2021 , 17, e210@97	70	17
102	Accurately Engineering 2/2D/0D Heterojunction In Hierarchical TiCT MXene Nanoarchitectures for Electromagnetic Wave Absorption and Shielding. <i>ACS Applied Materials & District Materials</i> , 13, 5866-38	76	17
101	Crystal defect-mediated band-gap engineering: a new strategy for tuning the optical properties of Ag2Se quantum dots toward enhanced hydrogen evolution performance. <i>Journal of Materials</i> Chemistry A, 2015, 3, 20051-20055		16
100	Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance LithiumBulfur batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 842, 155764		16
99	Ordered mesoporous CoFe2O4 nanoparticles: molten-salt-assisted rapid nanocasting synthesis and the effects of calcining heating rate. <i>New Journal of Chemistry</i> , 2014 , 38, 3193		16

98	Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine. <i>Journal of Colloid and Interface Science</i> , 2017 , 490, 23-28	9.3	16
97	Direct imaging of the layer-by-layer growth and rod-unit repairing defects of mesoporous silica SBA-15 by cryo-SEM. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17371		16
96	Fabrication of Hollow Cube Dual-Semiconductor LnO/MnO/C Nanocomposites with Excellent Microwave Absorption Performance. <i>ACS Applied Materials & District Amplied Materials & District & </i>	9.5	16
95	In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. <i>Chemical Engineering Journal</i> , 2021 , 415, 128951	14.7	15
94	Heterointerface-Driven Band Alignment Engineering and its Impact on Macro-Performance in Semiconductor Multilayer Nanostructures. <i>Small</i> , 2019 , 15, e1900837	11	14
93	Predominant growth orientation of Li1.2(Mn0.4Co0.4)O2 cathode materials produced by the NaOH compound molten salt method and their enhanced electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15200	13	14
92	The Deformations of Carbon Nanotubes under Cutting. ACS Nano, 2017, 11, 8464-8470	16.7	14
91	1D Electromagnetic-Gradient Hierarchical Carbon Microtube via Coaxial Electrospinning Design for Enhanced Microwave Absorption. <i>ACS Applied Materials & Design For Enhanced Microwave Absorption</i> . <i>ACS Applied Materials & Design For Enhanced Microwave Absorption</i> .	9.5	14
90	Preparation of Carbon Nanotube Coated Li4Ti5O12 Nanosheets Heterostructure as Ultrastable Anodes for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6352-6360	6.1	14
89	Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. <i>Science Bulletin</i> , 2017 , 62, 1365-1372	10.6	13
88	Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. <i>Chemical Engineering Journal</i> , 2022 , 430, 132949	14.7	13
87	The ordered mesoporous carbon coated graphene as a high-performance broadband microwave absorbent. <i>Carbon</i> , 2021 , 179, 435-444	10.4	13
86	Superior-capacity binder-free anode electrode for lithium-ion batteries: CoMnNiO nanosheets with metal/oxygen vacancies directly formed on Cu foil. <i>Nanoscale</i> , 2019 , 11, 5080-5093	7.7	13
85	Covalent Assembly of MoS2 Nanosheets with SnS Nanodots as Linkages for Lithium/Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 14729-14735	3.6	12
84	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 29101-29112	9.5	12
83	Yolk-Shell Nano ZnO@Co-Doped NiO with Efficient Polarization Adsorption and Catalysis Performance for Superior Lithium-Sulfur Batteries. <i>Small</i> , 2021 , 17, e2005227	11	12
82	Drawing advanced electromagnetic functional composites with ultra-low filler loading. <i>Chemical Engineering Journal</i> , 2020 , 399, 125720	14.7	11
81	Improved microwave absorption performance of a multi-dimensional Fe2O3/CNTCM@CN assembly achieved by enhanced dielectric relaxation. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5715-5726	7.1	11

(2021-2018)

80	The underlying micro-mechanism of performance enhancement of non-polar n-ZnO/p-AlGaN ultraviolet light emitting diode with i-ZnO inserted layer. <i>Applied Physics Letters</i> , 2018 , 112, 033505	3.4	11	
79	Atomic Mechanism of Interfacial-Controlled Quantum Efficiency and Charge Migration in InAs/GaSb Superlattice. <i>ACS Applied Materials & Superlattice</i> , 2017, 9, 26642-26647	9.5	11	
78	Self-Assembled 3D Hierarchical Copper Hydroxyphosphate Modified by the Oxidation of Copper Foil as a Recyclable, Wide Wavelength Photocatalyst. <i>Langmuir</i> , 2017 , 33, 13649-13656	4	11	
77	Rutile TiO Nanoparticles Encapsulated in a Zeolitic Imidazolate Framework-Derived Hierarchical Carbon Framework with Engineered Dielectricity as an Excellent Microwave Absorber. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 48140-48149	9.5	11	
76	Urchin-like cobalt hydroxide coupled with N-doped carbon dots hybrid for enhanced electrocatalytic water oxidation. <i>Chemical Engineering Journal</i> , 2021 , 420, 127598	14.7	11	
75	Interface compatibility engineering of Multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. <i>Chemical Engineering Journal</i> , 2022 , 429, 132191	14.7	11	
74	C/MnO@void@C with Triple Balances for Superior Microwave Absorption Performance. <i>ACS Applied Materials & Applied & Applied Materials & Applied & </i>	9.5	10	
73	Insights into the micro magnetic loss mechanism of microwave absorption by off-axis electron holography. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 475, 24-29	2.8	10	
72	A New Sodium Calcium Cyclotetravanadate Framework: Zero-Strain during Large-Capacity Lithium Intercalation. <i>Advanced Functional Materials</i> ,2105026	15.6	10	
71	Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials <i>Nano-Micro Letters</i> , 2022 , 14, 80	19.5	10	
70	Charge modulation of CNTs-based conductive network for oxygen reduction reaction and microwave absorption. <i>Carbon</i> , 2021 , 178, 310-319	10.4	9	
69	Multi-Path Electron Transfer in 1D Double-Shelled Sn@Mo C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance. <i>Small</i> , 2021 , 17, e2100283	11	9	
68	Controllable synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods and the distribution of electric property by off-axis electron holography. <i>Nano Research</i> , 2016 , 9, 2561-2571	10	9	
67	Hierarchical Engineering of Double-Shelled Nanotubes toward Hetero-Interfaces Induced Polarization and Microscale Magnetic Interaction. <i>Advanced Functional Materials</i> ,2202588	15.6	9	
66	Polarization-enhanced three-dimensional Co3O4/MoO2/C flowers as efficient microwave absorbers. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10248-10256	7.1	8	
65	Enhanced Magnetic Microwave Absorption at Low-Frequency Band by Ferrite Assembled Microspheres with Controlled Components and Morphologies. <i>Small Structures</i> , 2021 , 2, 2100033	8.7	8	
64	Polyionic Resin Supported Pd/Fe2O3Nanohybrids for Catalytic Hydrodehalogenation: Improved and Versatile Remediation for Toxic Pollutants. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2159-2169	3.9	8	
63	Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. <i>Nanoscale</i> , 2021 , 13, 2324-2332	7.7	8	

62	Tailoring Self-Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward High-Performance Consecutive Multi-Band Electromagnetic Wave Absorption at Gigahertz. <i>Advanced Functional Materials</i> ,2201129	15.6	8
61	Facile preparation of 3D hierarchical coaxial-cable-like Ni-CNTs@beta-(Ni, Co) binary hydroxides for supercapacitors with ultrahigh specific capacitance. <i>Journal of Colloid and Interface Science</i> , 2017 , 502, 33-43	9.3	7
60	Dynamic visualization of the phase transformation path in LiFePO during delithiation. <i>Nanoscale</i> , 2019 , 11, 17557-17562	7.7	7
59	Ni Mn Co O Nanowire/CNT Composite Microspheres with 3D Interconnected Conductive Network Structure via Spray-Drying Method: A High-Capacity and Long-Cycle-Life Anode Material for Lithium-Ion Batteries. <i>Small</i> , 2019 , 15, e1900069	11	7
58	Compressible and flexible PPy@MoS/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure. <i>Nanoscale</i> , 2021 , 13, 5115-5124	7.7	7
57	Thermal effects on current-related skyrmion formation in a nanobelt. <i>Applied Physics Letters</i> , 2018 , 112, 212403	3.4	7
56	Hierarchical Ti C T MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption <i>Small</i> , 2021 , e2104380	11	7
55	Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale hetero-interfaces. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1290-1298	13	6
54	A Low Strain A-Site Deficient Perovskite Lithium Lanthanum Niobate Anode for Superior Li+Storage. <i>Advanced Functional Materials</i> ,2106911	15.6	6
53	Understanding of Strain-Induced Electronic Structure Changes in Metal-Based Electrocatalysts: Using Pd@Pt Core-Shell Nanocrystals as an Ideal Platform. <i>Small</i> , 2021 , 17, e2100559	11	6
52	Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 210-218	9.3	6
51	In Situ Observation of Domain Wall Pinning in Sm(Co,Fe,Cu,Zr)z Magnet by Lorentz Microscopy. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	5
50	3D freestanding flower-like nickel-cobalt layered double hydroxides enriched with oxygen vacancies as efficient electrocatalysts for water oxidation. <i>Sustainable Materials and Technologies</i> , 2020 , 25, e00170	5.3	5
49	Anomalous Spin Behavior in FeGeTe Driven by Current Pulses. ACS Nano, 2020, 14, 9512-9520	16.7	5
48	Microstructure research for ferroelectric origin in the strained Hf0.5Zr0.5O2 thin film via geometric phase analysis. <i>Applied Physics Letters</i> , 2018 , 112, 143503	3.4	5
47	The role of graphene in nano-layered structure and long-term cycling stability of MnxCoyNizCO3 as an anode material for lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 105252-105261	3.7	5
46	Quantum efficiency optimization by maximizing wave function overlap in type-II superlattice photodetectors. <i>Nanoscale</i> , 2017 , 9, 11833-11840	7.7	5
45	Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. <i>Carbon</i> , 2022 , 191, 625-625	10.4	5

44	Direct View on the Origin of High Li+ Transfer Impedance in All-Solid-State Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2103971	15.6	5	
43	Probing the atomic interaction between zinc clusters and defective carbon in promoting the wide temperature applications of lithium-sulfur battery. <i>Energy Storage Materials</i> , 2021 , 41, 703-714	19.4	5	
42	Respective Roles of Inner and Outer Carbon in Boosting the K Storage Performance of Dual-Carbon-Confined ZnSe <i>Advanced Science</i> , 2021 , e2104822	13.6	5	
41	Customizing Heterointerfaces in Multilevel Hollow Architecture Constructed by Magnetic Spindle Arrays Using the Polymerizing-Etching Strategy for Boosting Microwave Absorption <i>Advanced Science</i> , 2022 , e2200804	13.6	5	
40	Construction of CoNiFe Trimetallic Carbonate Hydroxide Hierarchical Hollow Microflowers with Oxygen Vacancies for Electrocatalytic Water Oxidation. <i>Advanced Functional Materials</i> ,2200726	15.6	5	
39	Giant Topological Hall Effect and Superstable Spontaneous Skyrmions below 330 K in a Centrosymmetric Complex Noncollinear Ferromagnet NdMnGe. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 24125-24132	9.5	4	
38	Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap. <i>Nano Research</i> , 2020 , 13, 1536-1543	10	4	
37	Pb/C Composite with Spherical Pb Nanoparticles Encapsulated in Carbon Microspheres as a High-Performance Anode for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7416-7426	6.1	4	
36	A Polarization Boosted Strategy for the Modification of Transition Metal Dichalcogenides as Electrocatalysts for Water-Splitting. <i>Small</i> , 2021 , 17, e2100510	11	4	
35	Liß Batteries: Nickel©obalt Double Hydroxide as a Multifunctional Mediator for Ultrahigh-Rate and Ultralong-Life Liß Batteries (Adv. Energy Mater. 35/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870	17528	4	
34	Self-Assembly MXene-rGO/CoNi Film with Massive Continuous Heterointerfaces and Enhanced Magnetic Coupling for Superior Microwave Absorber <i>Nano-Micro Letters</i> , 2022 , 14, 73	19.5	4	
33	Emerging Materials and Designs for Low- and Multi-Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?. <i>Advanced Functional Materials</i> ,2200123	15.6	4	
32	Aspect ratio tuned red-shift of photoluminescence emission of PbSe nanorods investigated by electron holography. <i>Journal of Colloid and Interface Science</i> , 2017 , 493, 385-392	9.3	3	
31	Tailorable coaxial carbon nanocables with high storage capabilities. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22125-22130	13	3	
30	Understanding the role of aluminium in determining the surface structure and electrochemical performance of layered cathodes. <i>Nanoscale</i> , 2019 , 11, 13007-13016	7.7	3	
29	Insight into the split and asymmetry of charge distribution in biased M-structure superlattice. <i>Applied Physics Letters</i> , 2017 , 111, 053503	3.4	3	
28	Synthesis of Nonspherical Hollow Architecture with Magnetic Fe Core and Ni Decorated Tadpole-Like Shell as Ultrabroad Bandwidth Microwave Absorbers. <i>Small</i> , 2021 , 17, e2103351	11	3	
27	Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. <i>Journal of Materials Science and Technology</i> , 2022 , 107, 100-110	9.1	3	

26	Control of electron tunnelling by fine band engineering of semiconductor potential barriers. <i>Nanoscale</i> , 2019 , 11, 21376-21385	7.7	3
25	Conductivity optimization via intertwined CNTs between TiNbO@C microspheres for a superior performance Li-ion battery anode. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 1103-1108	9.3	3
24	Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption <i>Nano-Micro Letters</i> , 2022 , 14, 96	19.5	3
23	Controllable one-pot synthesis of FeSe2 nanooctahedra embedded microtubes by a sacrificial self-template method. <i>New Journal of Chemistry</i> , 2017 , 41, 423-426	3.6	2
22	Hydrogen peroxide-assisted synthesis of oxygen-doped carbon nitride nanorods for enhanced photocatalytic hydrogen evolution <i>RSC Advances</i> , 2019 , 9, 28421-28431	3.7	2
21	Hollow Nanochains: Hollow Palladium-Gold Nanochains with Periodic Concave Structures as Superior ORR Electrocatalysts and Highly Efficient SERS Substrates (Adv. Energy Mater. 18/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070082	21.8	2
20	Ultraviolet emission of amorphous SiO2+x nanowires with connected bead-chain morphology. <i>RSC Advances</i> , 2014 , 4, 11493-11498	3.7	2
19	Synthesis and thermoelectric properties of defect-containing PbSe B bTe heterojunction nanostructures. <i>RSC Advances</i> , 2017 , 7, 53855-53860	3.7	2
18	Impedance amelioration of coaxial-electrospun TiO2@Fe/C@TiO2 vesicular carbon microtubes with dielectric-magnetic synergy toward highly efficient microwave absorption. <i>Chemical Engineering Journal</i> , 2021 , 133640	14.7	2
17	Domino Effect of Thickness Fluctuation on Subband Structure and Electron Transport within Semiconductor Cascade Structures. <i>ACS Applied Materials & Empty Interfaces</i> , 2020 , 12, 41950-41959	9.5	2
16	Insights into Growth-Oriented Interfacial Modulation within Semiconductor Multilayers. <i>ACS Applied Materials & Description of Ma</i>	9.5	2
15	Unusual effects of vacuum annealing on large-area Ag3PO4 microcrystalline film photoanode boosting cocatalyst- and scavenger-free water splitting. <i>Journal of Materiomics</i> , 2021 , 7, 929-939	6.7	2
14	Dual-surfactant templated hydrothermal synthesis of CoSe2 hierarchical microclews for dielectric microwave absorption. <i>Journal of Advanced Ceramics</i> , 2022 , 11, 504-514	10.7	1
13	General biotemplating of hierarchically ultra-vesicular microspheres for superior microwave absorption. <i>Chemical Engineering Journal</i> , 2022 , 431, 133925	14.7	1
12	Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance. <i>Carbon</i> , 2022 , 189, 530-538	10.4	1
11	Self-Adapting Electrochemical Grinding Strategy for Stable Silicon Anode. <i>Advanced Functional Materials</i> ,2109887	15.6	1
10	Skyrmion bubbles stabilization in confined hole and trench materials. <i>Applied Physics Letters</i> , 2020 , 117, 052405	3.4	1
9	Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	1

LIST OF PUBLICATIONS

8	Atomic short-range order in a cation-deficient perovskite anode for fast-charging and long-life lithium-ion batteries <i>Advanced Materials</i> , 2022 , e2200914	24	1
7	Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption. <i>Carbon</i> , 2022 ,	10.4	1
6	Chiral Asymmetric Polarizations Generated by Bioinspired Helical Carbon Fibers to Induce Broadband Microwave Absorption and Multispectral Photonic Manipulation. <i>Advanced Optical Materials</i> ,2200249	8.1	1
5	Zero-strain Ca0.4Ce0.6VO4 anode material for high capacity and long-life Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 25663-25671	13	O
4	Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in type-II superlattices. <i>Nano Research</i> ,1	10	0
3	Controllable Domain Walls in Two-Dimensional Ferromagnetic Material FeGeTe Based on the Spin-Transfer Torque Effect <i>ACS Nano</i> , 2021 , 15, 19513-19521	16.7	O
2	Two-Dimensional Energy Band Engineering in GaAs/AlGaAs CoreBhell Nanowires by Crystal-Phase Switching for Charge Manipulation. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3323-3328	5.6	
1	Compensation mechanism of carriers within weakly coupled quantum wells. <i>Applied Physics Letters</i> , 2021 , 118, 122107	3.4	