
Kunihiko Wakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9877389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy. Annals of Internal Medicine, 2018, 169, 357.	3.9	391
2	Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience. Gastroenterology, 2018, 154, 2027-2029.e3.	1.3	281
3	Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clinical Gastroenterology and Hepatology, 2020, 18, 1874-1881.e2.	4.4	167
4	Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointestinal Endoscopy, 2019, 89, 408-415.	1.0	165
5	Characterization of Colorectal Lesions Using a Computer-Aided Diagnostic System for Narrow-Band Imaging Endocytoscopy. Gastroenterology, 2016, 150, 1531-1532.e3.	1.3	158
6	Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointestinal Endoscopy, 2015, 81, 621-629.	1.0	136
7	Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy, 2017, 49, 798-802.	1.8	109
8	Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy, 2018, 50, 230-240.	1.8	100
9	Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy, 2016, 48, 1110-1118.	1.8	98
10	Management of T1 colorectal cancers after endoscopic treatment based on the risk stratification of lymph node metastasis. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1126-1132.	2.8	73
11	Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 757-766.	2.8	65
12	Practical problems of measuring depth of submucosal invasion in T1 colorectal carcinomas. International Journal of Colorectal Disease, 2016, 31, 137-146.	2.2	45
13	Endocytoscopic microvasculature evaluation is a reliable new diagnostic method for colorectal lesions (with video). Gastrointestinal Endoscopy, 2015, 82, 912-923.	1.0	41
14	Double staining with crystal violet and methylene blue is appropriate for colonic endocytoscopy: <scp>A</scp> n <scp><i>in vivo</i></scp> prospective pilot study. Digestive Endoscopy, 2014, 26, 403-408.	2.3	40
15	Management and risk factor of stenosis after endoscopic submucosal dissection for colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 86, 358-369.	1.0	39
16	Efficiency of endocytoscopy in differentiating types of serrated polyps. Gastrointestinal Endoscopy, 2014, 79, 648-656.	1.0	35
17	Endocytoscopic narrow-band imaging efficiency for evaluation of inflammatory activity in ulcerative colitis. World Journal of Gastroenterology, 2015, 21, 2108-2115.	3.3	32
18	Current status and future perspective on artificial intelligence for lower endoscopy. Digestive Endoscopy, 2021, 33, 273-284.	2.3	25

KUNIHIKO WAKAMURA

#	Article	IF	CITATIONS
19	Narrow band imaging efficiency in evaluation of mucosal healing/relapse of ulcerative colitis. Endoscopy International Open, 2018, 06, E518-E523.	1.8	24
20	Risk factors of recurrence in T1 colorectal cancers treated by endoscopic resection alone or surgical resection with lymph node dissection. International Journal of Colorectal Disease, 2018, 33, 1029-1038.	2.2	22
21	Left-sided location is a risk factor for lymph node metastasis of T1 colorectal cancer: a single-center retrospective study. International Journal of Colorectal Disease, 2020, 35, 1911-1919.	2.2	20
22	Impact of the clinical use of artificial intelligence–assisted neoplasia detection for colonoscopy: a large-scale prospective, propensity score–matched study (with video). Gastrointestinal Endoscopy, 2022, 95, 155-163.	1.0	19
23	Diagnostic performance of endocytoscopy for evaluating the invasion depth of different morphological types of colorectal tumors. Digestive Endoscopy, 2015, 27, 755-762.	2.3	18
24	Patient gender as a factor associated with lymph node metastasis in T1 colorectal cancer: A systematic review and meta-analysis. Molecular and Clinical Oncology, 2017, 6, 517-524.	1.0	16
25	Classification of nuclear morphology in endocytoscopy of colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 85, 628-638.	1.0	15
26	Treatment policy for colonic laterally spreading tumors based on each clinicopathologic feature of 4 subtypes: actual status of pseudo-depressed type. Gastrointestinal Endoscopy, 2020, 92, 1083-1094.e6.	1.0	15
27	Comparative clinicopathological characteristics of colon and rectal T1 carcinoma. Oncology Letters, 2017, 13, 805-810.	1.8	14
28	Endocytoscopy for the differential diagnosis of colorectal low-grade adenoma: a novel possibility for the "resect and discard―strategy. Gastrointestinal Endoscopy, 2020, 91, 676-683.	1.0	13
29	Beyond complete endoscopic healing: goblet appearance using an endocytoscope to predict future sustained clinical remission in ulcerative colitis. Digestive Endoscopy, 2021, , .	2.3	13
30	Combined endocytoscopy with pit pattern diagnosis in ulcerative colitisâ€associated neoplasia: Pilot study. Digestive Endoscopy, 2021, , .	2.3	12
31	Endocytoscopic intramucosal capillary network changes and crypt architecture abnormalities can predict relapse in patients with an ulcerative colitis Mayo endoscopic score of 1. Digestive Endoscopy, 2020, 32, 1082-1091.	2.3	11
32	Evaluation of microvascular findings of deeply invasive colorectal cancer by endocytoscopy with narrow-band imaging. Endoscopy International Open, 2016, 04, E1280-E1285.	1.8	10
33	Diagnosis of sessile serrated adenomas/polyps using endocytoscopy (with videos). Digestive Endoscopy, 2016, 28, 43-48.	2.3	9
34	A novel ability of endocytoscopy to diagnose histological grade of differentiation in T1 colorectal carcinomas. Endoscopy, 2017, 50, 69-74.	1.8	9
35	Clinical Efficacy of Endocytoscopy for Gastrointestinal Endoscopy. Clinical Endoscopy, 2021, 54, 455-463.	1.5	8
36	The concept of â€~Semi-clean colon' using the pit pattern classification system has the potential to be acceptable in combination with a <3-year surveillance colonoscopy. Oncology Letters, 2017, 14, 2735-2742.	1.8	7

KUNIHIKO WAKAMURA

#	Article	IF	CITATIONS
37	Endocytoscopy with NBI has the potential to correctly diagnose diminutive colorectal polyps that are difficult to diagnose using conventional NBI. Endoscopy International Open, 2020, 08, E360-E367.	1.8	7
38	Depressed Colorectal Cancer: A New Paradigm in Early Colorectal Cancer. Clinical and Translational Gastroenterology, 2020, 11, e00269.	2.5	7
39	Retrospective analysis of large bowel obstruction or perforation caused by oral preparation for colonoscopy. Endoscopy International Open, 2017, 05, E471-E476.	1.8	6
40	White light-emitting contrast image capsule endoscopy for visualization of small intestine lesions: a pilot study. Endoscopy International Open, 2018, 06, E315-E321.	1.8	6
41	High Serum CA19-9 Concentration Predicts Poor Prognosis in Elderly Patients with Stage IV Colorectal Cancer. Gastrointestinal Tumors, 2018, 5, 117-124.	0.7	6
42	Tumor Location as a Prognostic Factor in T1 Colorectal Cancer. Journal of the Anus, Rectum and Colon, 2022, 6, 9-15.	1.1	6
43	Comparison of the endocytoscopic and clinicopathologic features of colorectal neoplasms. Endoscopy International Open, 2016, 04, E397-E402.	1.8	5
44	Use of endocytoscopy for identification of sessile serrated adenoma/polyps and hyperplastic polyps by quantitative image analysis of the luminal areas. Endoscopy International Open, 2017, 05, E769-E774.	1.8	5
45	Magnifying chromoendoscopic and endocytoscopic findings of juvenile polyps in the colon and rectum. Oncology Letters, 2016, 11, 237-242.	1.8	4
46	In vivo detection of desmoplastic reaction using endocytoscopy: A new diagnostic marker of submucosal or more extensive invasion in colorectal carcinoma. Molecular and Clinical Oncology, 2017, 6, 291-295.	1.0	4
47	Diminutive intramucosal invasive (Tis) sigmoid colon carcinoma. Clinical Journal of Gastroenterology, 2018, 11, 359-363.	0.8	4
48	Clinicopathological features of T1 colorectal carcinomas with skip lymphovascular invasion. Oncology Letters, 2018, 16, 7264-7270.	1.8	4
49	Shortâ€ʿ and longâ€ʿterm outcomes of selfâ€ʿexpanding metallic stent placement vs. emergency surgery for malignant colorectal obstruction. Molecular and Clinical Oncology, 2021, 14, 63.	1.0	3
50	Characteristics of colorectal tumours in asymptomatic patients with negative immunochemical faecal occult blood test results. Molecular and Clinical Oncology, 2015, 3, 1019-1024.	1.0	2
51	Clinical and endoscopic characteristics of post-colonoscopy colorectal cancers detected within 10 years after a previous negative examination. Endoscopy International Open, 2021, 09, E1472-E1479.	1.8	1
52	Clinicopathological features of small T1 colorectal cancers. World Journal of Clinical Cases, 2021, 9, 10088-10097.	0.8	1
53	Tumor response of FOLFOXIRI plus cetuximab versus bevacizumab in RAS wild-type metastatic colorectal cancer: The subgroup-analysis of DEEPER trial (JACCRO CC-13) Journal of Clinical Oncology, 2022, 40, 109-109.	1.6	1
54	Gastric cancer metastasis to the transverse colon requiring differentiation from early-stage colorectal cancer. Progress of Digestive Endoscopy, 2021, 98, 123-124.	0.0	0

KUNIHIKO WAKAMURA

#	Article	IF	CITATIONS
55	Clinicopathological studies of colorectal cancer in the aged patients. Progress of Digestive Endoscopy, 2009, 74, 36-39.	0.0	0
56	A case of young man′s colonic cancer with tuberculosis. Progress of Digestive Endoscopy, 2009, 75, 98-99.	0.0	0
57	A Comparison of Magnifying Chromoendoscopy Versus Narrow Band Imaging in the Diagnosis of Depth of Invasion for Early Colorectal Cancers. The Showa University Journal of Medical Sciences, 2011, 23, 129-144.	0.1	0
58	Clinicopathological characteristics of colorectal carcinoid tumor focusing on risk factors of lymph node metastasis. Progress of Digestive Endoscopy, 2011, 79, 46-50.	0.0	0
59	The newly developed MoviPrep can reduce the patients' burden in the preparation for colonoscopy. Progress of Digestive Endoscopy, 2014, 85, 47-50.	0.0	0
60	A case of gastrointestinal injury associated with nonsteroidal anti-inflammatory drug use. Progress of Digestive Endoscopy, 2018, 93, 113-115.	0.0	0
61	Effects of the use of a wavy cap on the tip of the colonoscope on the training performance of novice endoscopists for colonoscopy. World Academy of Sciences Journal, 2020, 3, .	0.6	0