
Jaroslaw Kita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/987724/publications.pdf Version: 2024-02-01

ΙΔΡΟΟΙΔΙΝΙΚΙΤΑ

#	Article	IF	CITATIONS
1	Mobile sealing and repairing of damaged ceramic coatings by powder aerosol deposition at room temperature. Open Ceramics, 2022, 10, 100253.	2.0	1
2	Posttreatment of powder aerosol deposited oxide ceramic films by high power LED. International Journal of Applied Ceramic Technology, 2022, 19, 1540-1553.	2.1	6
3	Temperature-dependent dielectric anomalies in powder aerosol deposited ferroelectric ceramic films. Journal of Materiomics, 2022, 8, 1239-1250.	5.7	3
4	Novel, low-cost device to simultaneously measure the electrical conductivity and the Hall coefficient from room temperature up to 600 °C. Journal of Sensors and Sensor Systems, 2021, 10, 71-81.	0.9	3
5	Powder Aerosol Deposition as a Method to Produce Garnetâ€Type Solid Ceramic Electrolytes: A Study on Electrochemical Film Properties and Industrial Applications. Energy Technology, 2021, 9, 2100211.	3.8	14
6	Discontinuous Powder Aerosol Deposition: An Approach to Prepare Films Using Smallest Powder Quantities. Coatings, 2021, 11, 844.	2.6	3
7	Making powder aerosol deposition accessible for small amounts: A novel and modular approach to produce dense ceramic films. International Journal of Applied Ceramic Technology, 2021, 18, 2178.	2.1	4
8	Laserâ€Annealing of Thermoelectric CuFe 0.98 Sn 0.02 O 2 Films Produced by Powder Aerosol Deposition Method. Advanced Materials Interfaces, 2020, 7, 2001114.	3.7	10
9	What Happens during Thermal Postâ€Treatment of Powder Aerosol Deposited Functional Ceramic Films? Explanations Based on an Experimentâ€Enhanced Literature Survey. Advanced Materials, 2020, 32, e1908104.	21.0	35
10	Dense Y-doped ion conducting perovskite films of BaZrO3, BaSnO3, and BaCeO3 for SOFC applications produced by powder aerosol deposition at room temperature. International Journal of Hydrogen Energy, 2020, 45, 10000-10016.	7.1	50
11	How to treat powders for the room temperature aerosol deposition method to avoid porous, low strength ceramic films. Journal of the European Ceramic Society, 2019, 39, 592-600.	5.7	47
12	In- and through-plane conductivity of 8YSZ films produced at room temperature by aerosol deposition. Journal of Materials Science, 2019, 54, 13619-13634.	3.7	13
13	Aerosol Deposition Method - A Promising Novel Method to Produce Ceramic Gas Sensor Films at Room Temperature. , 2019, , .		0
14	Powder aerosol deposition method— novel applications in the field of sensing and energy technology. Functional Materials Letters, 2019, 12, 1930005.	1.2	38
15	Investigation of the <i>in situ</i> calcination of aerosol co-deposited NiO-Mn ₂ O ₃ films. Functional Materials Letters, 2019, 12, 1950039.	1.2	3
16	Novel Method for NTC Thermistor Production by Aerosol Co-Deposition and Combined Sintering. Sensors, 2019, 19, 1632.	3.8	11
17	Oxygen partial pressure dependency of the electrical conductivity of aerosol deposited alumina films between 650â€ ⁻ °C and 900â€ ⁻ °C. Materials Letters, 2019, 245, 208-210.	2.6	1
18	Manufacturing Dense Thick Films of Lunar Regolith Simulant EAC-1 at Room Temperature. Materials, 2019, 12, 487.	2.9	11

JAROSLAW KITA

#	Article	IF	CITATIONS
19	Influence of high temperature annealing on the dielectric properties of alumina films prepared by the aerosol deposition method. Functional Materials Letters, 2018, 11, 1850022.	1.2	7
20	Characterization of nickel manganite NTC thermistor films prepared by aerosol deposition at room temperature. Journal of the European Ceramic Society, 2018, 38, 613-619.	5.7	56
21	Annealing of Gadolinium-Doped Ceria (GDC) Films Produced by the Aerosol Deposition Method. Materials, 2018, 11, 2072.	2.9	12
22	Thermal Treatment of Aerosol Deposited NiMn2O4 NTC Thermistors for Improved Aging Stability. Sensors, 2018, 18, 3982.	3.8	25
23	Conductometric Soot Sensors: Internally Caused Thermophoresis as an Important Undesired Side Effect. Sensors, 2018, 18, 3531.	3.8	13
24	High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities. Journal of Thermal Spray Technology, 2018, 27, 870-879.	3.1	23
25	Effect of substrate hardness and surface roughness on the film formation of aerosol-deposited ceramic films. Functional Materials Letters, 2017, 10, 1750045.	1.2	14
26	Analysis of the characteristics of thick-film NTC thermistor devices manufactured by screen-printing and firing technique and by room temperature aerosol deposition method (ADM). Functional Materials Letters, 2017, 10, 1750073.	1.2	8
27	Self-heated HTCC-based ceramic disc for mixed potential sensors and for direct conversion sensors for automotive catalysts. Sensors and Actuators B: Chemical, 2017, 248, 793-802.	7.8	23
28	Sensitivity Improvement of Thermoelectric Hydrocarbon Sensors: Combination of Glass-Ceramic Tapes and Alumina Substrates. Proceedings (mdpi), 2017, 1, 403.	0.2	2
29	Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing. Sensors, 2017, 17, 2422.	3.8	62
30	Pulsed Polarization-Based NOx Sensors of YSZ Films Produced by the Aerosol Deposition Method and by Screen-Printing. Sensors, 2017, 17, 1715.	3.8	14
31	First steps to develop a sensor for a Tian–Calvet calorimeter with increased sensitivity. Journal of Sensors and Sensor Systems, 2016, 5, 205-212.	0.9	7
32	Optimization of a sensor for a Tian–Calvet calorimeter with LTCC-based sensor discs. Journal of Sensors and Sensor Systems, 2016, 5, 381-388.	0.9	1
33	Screen-printable Type S Thermocouple for Thick-film Technology. Procedia Engineering, 2015, 120, 828-831.	1.2	11
34	Thermoelectric hydrocarbon sensor in thick-film technology for on-board-diagnostics of a diesel oxidation catalyst. Sensors and Actuators B: Chemical, 2015, 214, 234-240.	7.8	27
35	Thermoelectric Hydrocarbon Sensor in Thick-film Technology for On-Board-Diagnostics of a Diesel Oxidation Catalyst. Procedia Engineering, 2014, 87, 616-619.	1.2	1
36	Electrical conductivity relaxation measurements: Application of low thermal mass heater stick. Solid State Ionics, 2014, 262, 914-917.	2.7	5

JAROSLAW KITA

#	Article	IF	CITATIONS
37	Development and Application of a Fast Solid-state Potentiometric CO2-sensor in Thick-film Technology. Procedia Engineering, 2014, 87, 1031-1034.	1.2	4
38	Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing. Sensors and Actuators B: Chemical, 2013, 187, 295-300.	7.8	52
39	Novel tube-type LTCC transducers with buried heaters and inner interdigitated electrodes as a platform for gas sensing at various high temperatures. Sensors and Actuators B: Chemical, 2013, 189, 80-88.	7.8	22
40	Planar platform for temperature dependent four-wire impedance spectroscopy—A novel tool to characterize functional materials. Sensors and Actuators B: Chemical, 2013, 187, 174-183.	7.8	5
41	Novel Tube-Type LTCC Transducers with Buried Heaters and Inner Electrodes for High-Temperatures Gas Sensors. Procedia Engineering, 2012, 47, 60-63.	1.2	4
42	Calorimetric sensitivity and thermal resolution of a novel miniaturized ceramic DSC chip in LTCC technology. Thermochimica Acta, 2012, 543, 142-149.	2.7	7
43	Miniaturized ceramic differential scanning calorimeter with integrated oven and crucible in LTCC technology. Sensors and Actuators A: Physical, 2011, 172, 21-26.	4.1	21
44	Investigation of the short-time high-current behavior of vias manufactured in hybrid thick-film technology. Microelectronics Reliability, 2011, 51, 1257-1263.	1.7	6
45	Thick-film NTC thermistors and LTCC materials: The dependence of the electrical and microstructural characteristics on the firing temperature. Journal of the European Ceramic Society, 2009, 29, 3265-3271.	5.7	19
46	Metal-Organic Frameworks for Sensing Applications in the Gas Phase. Sensors, 2009, 9, 1574-1589.	3.8	377
47	CO2 Selective Potentiometric Sensor in Thick-film Technology. Sensors, 2008, 8, 4774-4785.	3.8	25
48	Laser processing of materials for MCM-C applications. , 2008, , .		3
49	An investigation of thick-film materials for temperature and pressure sensors on self-constrained LTCC substrates. , 2008, , .		2
50	Chosen electrical and stability properties of laser-shaped thick-film and LTCC inductors. , 2008, , .		3
51	Thick-film Temperature Sensors and LTCC Substrates - Evaluation and Characterization. , 2007, , .		0
52	Thick-film PTC thermistors and LTCC structures: The dependence of the electrical and microstructural characteristics on the firing temperature. Journal of the European Ceramic Society, 2007, 27, 2237-2243.	5.7	11
53	Thickâ€film strain and temperature sensors on LTCC substrates. Microelectronics International, 2006, 23, 33-41.	0.6	10
54	Thick-film temperature sensors on alumina and LTCC substrates. Journal of the European Ceramic Society, 2005, 25, 3443-3450.	5.7	37

JAROSLAW KITA

#	Article	IF	CITATIONS
55	Evaluation of compatibility of thick-film PTC thermistors and LTCC structures. Microelectronics Reliability, 2005, 45, 1924-1929.	1.7	3
56	Hot Plate Gas Sensors-Are Ceramics Better?. International Journal of Applied Ceramic Technology, 2005, 2, 383-389.	2.1	48
57	Laser forming of LTCC Ceramics for Hot-Plate Gas Sensors. Journal of Microelectronics and Electronic Packaging, 2005, 2, 14-18.	0.7	3
58	Thick-film resistors on various substrates as sensing elements for strain-gauge applications. Sensors and Actuators A: Physical, 2003, 107, 261-272.	4.1	34
59	LTCC package for MEMS device. , 2003, , .		8
60	Laser treatment of LTCC for 3D structures and elements fabrication. Microelectronics International, 2002, 19, 14-18.	0.6	38
61	Electrical and stability properties and ultrasonic microscope characterisation of low temperature co-fired ceramics resistors. Microelectronics Reliability, 2001, 41, 669-676.	1.7	9
62	Properties of laser cut LTCC heaters. Microelectronics Reliability, 2000, 40, 1005-1010.	1.7	49