
Piyush B Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9872928/publications.pdf Version: 2024-02-01

DIVUSH R CUDTA

#	Article	IF	CITATIONS
1	Breast tissue regeneration is driven by cell-matrix interactions coordinating multi-lineage stem cell differentiation through DDR1. Nature Communications, 2021, 12, 7116.	5.8	10
2	Loss of Slug Compromises DNA Damage Repair and Accelerates Stem Cell Aging in Mammary Epithelium. Cell Reports, 2019, 28, 394-407.e6.	2.9	30
3	Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell, 2019, 24, 65-78.	5.2	399
4	BCL11B Drives Human Mammary Stem Cell Self-Renewal InÂVitro by Inhibiting Basal Differentiation. Stem Cell Reports, 2018, 10, 1131-1145.	2.3	9
5	Cancer cells exhibit clonal diversity in phenotypic plasticity. Open Biology, 2017, 7, 160283.	1.5	30
6	3D Primary Culture Model to Study Human Mammary Development. Methods in Molecular Biology, 2017, 1612, 139-147.	0.4	17
7	SMARCE1 is required for the invasive progression of in situ cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4153-4158.	3.3	35
8	Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nature Communications, 2017, 8, 1079.	5.8	95
9	Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis. Molecular Cell, 2016, 63, 60-71.	4.5	143
10	Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Research, 2016, 18, 19.	2.2	99
11	Perturbation-Expression Analysis Identifies RUNX1 as a Regulator of Human Mammary Stem Cell Differentiation. PLoS Computational Biology, 2015, 11, e1004161.	1.5	22
12	De-Differentiation Confers Multidrug Resistance Via Noncanonical PERK-Nrf2 Signaling. PLoS Biology, 2014, 12, e1001945.	2.6	94
13	The endoplasmic reticulum may be an Achilles' heel of cancer cells that have undergone an epithelial-to-mesenchymal transition. Molecular and Cellular Oncology, 2014, 1, e961822.	0.3	4
14	Epithelial-to-Mesenchymal Transition Activates PERK–eIF2α and Sensitizes Cells to Endoplasmic Reticulum Stress. Cancer Discovery, 2014, 4, 702-715.	7.7	250
15	Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation. Stem Cell Reports, 2014, 2, 633-647.	2.3	85
16	The Hippo Transducer TAZ Interacts with the SWI/SNF Complex to Regulate Breast Epithelial Lineage Commitment. Cell Reports, 2014, 6, 1059-1072.	2.9	139
17	Identification of a selective small molecule inhibitor of breast cancer stem cells. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3571-3574.	1.0	28
18	Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell, 2011, 146, 633-644.	13.5	1,334

Piyush B Gupta

#	Article	IF	CITATIONS
19	Genetic Predisposition Directs Breast Cancer Phenotype by Dictating Progenitor Cell Fate. Cell Stem Cell, 2011, 8, 149-163.	5.2	327
20	Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proceedings of the United States of America, 2010, 107, 21737-21742.	3.3	236
21	Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell, 2009, 138, 645-659.	13.5	2,200
22	Systemic Stromal Effects of Estrogen Promote the Growth of Estrogen Receptor–Negative Cancers. Cancer Research, 2007, 67, 2062-2071.	0.4	149
23	The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genetics, 2005, 37, 1047-1054.	9.4	404