Shih-Feng Tseng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9871919/publications.pdf

Version: 2024-02-01

38	504	14	21
papers	citations	h-index	g-index
38	38	38	520
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Superhydrophobic graphene/ceramic templates for the preparation of particulate drugs. Ceramics International, 2022, 48, 2021-2030.	4.8	3
2	Mechanical and microstructural properties of additively manufactured Ti–6Al–4ÂV stents with CO2 laser postannealing treatment. International Journal of Advanced Manufacturing Technology, 2022, 119, 6571-6581.	3.0	6
3	Arrayed porous polydimethylsiloxane/barium titanate microstructures for high-sensitivity flexible capacitive pressure sensors. Ceramics International, 2022, 48, 13144-13153.	4.8	25
4	Laser-induced graphene via the far-infrared irradiation of polyimide films for flexible electric heater applications. International Journal of Advanced Manufacturing Technology, 2022, 120, 5351-5362.	3.0	5
5	Investigation of line-shaped CO2 laser annealing on InN/AIN/sapphire substrates. International Journal of Advanced Manufacturing Technology, 2022, 120, 5687-5696.	3.0	1
6	Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors. International Journal of Advanced Manufacturing Technology, 2021, 113, 1203-1213.	3.0	4
7	Development of Flexible Triboelectric Generators Based on Patterned Conductive Textile and PDMS Layers. Energies, 2021, 14, 1391.	3.1	7
8	Single-step fiber laser reduction and patterning of graphene oxide films for ceramic-based heaters. Ceramics International, 2021, 47, 23423-23432.	4.8	5
9	Synthesis of nanograiny SnO2 films on laser-patterned graphene/ceramic substrates for low-temperature ethanol gas sensors. Ceramics International, 2021, 47, 33498-33508.	4.8	12
10	Ultrafast laser direct writing of screen-printed graphene-based strain electrodes for sensing glass deformation. Ceramics International, 2021, 47, 29099-29108.	4.8	10
11	Surface microtexturing of Ti-6Al-4V and SS316L alloys using high pulsed fiber lasers for improving the adhesive bonded performance. Optics and Laser Technology, 2021, 143, 107349.	4.6	12
12	Investigation of interactions between high pulsed ultraviolet lasers and composite graphene/AgNWs films. Applied Surface Science, 2021, 570, 151060.	6.1	12
13	A Simple Approach to MXene Micropatterning from Molecularly Driven Assembly. ACS Omega, 2021, 6, 35866-35875.	3.5	1
14	Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection. Applied Surface Science, 2020, 508, 145204.	6.1	30
15	Investigation of interactions between ultrafast laser beams and screen-printed silver nanopaste films. Applied Surface Science, 2020, 512, 144696.	6.1	19
16	Adhesion enhancement of conductive graphene/PI substrates through a vacuum plasma system. Surface and Coatings Technology, 2020, 388, 125601.	4.8	5
17	Development of textile-based triboelectric nanogenerators integrated with plastic metal electrodes for wearable devices. International Journal of Advanced Manufacturing Technology, 2019, 104, 2633-2644.	3.0	14
18	High-yield production of graphene flakes using a novel electrochemical/mechanical hybrid exfoliation. International Journal of Advanced Manufacturing Technology, 2019, 104, 2751-2760.	3.0	14

#	Article	IF	Citations
19	Ultrafast laser structuring of graphene-based multi-zone heaters for the detection of antioxidant capacity. International Journal of Advanced Manufacturing Technology, 2019, 103, 3115-3124.	3.0	1
20	High-performance graphene-based heaters fabricated using maskless ultraviolet laser patterning. International Journal of Advanced Manufacturing Technology, 2019, 102, 3011-3020.	3.0	15
21	Investigation of post-annealing aluminum-doped zinc oxide (AZO) thin films by a graphene-based heater. Applied Surface Science, 2018, 448, 163-167.	6.1	20
22	Characteristics of Graphene Oxide Films Reduced by Using an Atmospheric Plasma System. Nanomaterials, 2018, 8, 802.	4.1	15
23	Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations. Applied Surface Science, 2018, 444, 578-583.	6.1	38
24	Multilayer stack materials on silicon-based wafer dicing processes using ultraviolet laser direct dicing and milling methods. Optics and Laser Technology, 2018, 108, 441-449.	4.6	3
25	Picosecond laser micropatterning of graphene films for rapid heating chips. Applied Surface Science, 2018, 450, 380-386.	6.1	19
26	A facile approach to fabrication and characterization of conductive conjugated polyvinyl alcohol/graphene composite nanofibers. Materials Letters, 2018, 233, 130-133.	2.6	6
27	Laser structuring of parallel electrode array on graphene/glass substrates for rapid inspections of moisturizing efficacy. International Journal of Advanced Manufacturing Technology, 2017, 91, 3663-3671.	3.0	10
28	Graphene-based chips fabricated by ultraviolet laser patterning for an electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 2016, 226, 342-348.	7.8	9
29	Laser micromachining of screen-printed graphene for forming electrode structures. Applied Surface Science, 2016, 374, 305-311.	6.1	8
30	Investigation the interaction between the pulsed ultraviolet laser beams and PEDOT:PSS/graphene composite films. Applied Surface Science, 2015, 356, 486-491.	6.1	11
31	Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies. Optics and Lasers in Engineering, 2014, 57, 58-63.	3.8	29
32	Electrode patterning on PEDOT:PSS thin films by pulsed ultraviolet laser for touch panel screens. Applied Physics A: Materials Science and Processing, 2013, 112, 41-47.	2.3	40
33	Pulsed Nd:YAG laser treatment of monocrystalline silicon substrate. International Journal of Advanced Manufacturing Technology, 2011, 56, 223-231.	3.0	17
34	Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation. Applied Surface Science, 2011, 257, 7204-7209.	6.1	30
35	The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates. Applied Surface Science, 2011, 257, 8813-8819.	6.1	32
36	Characteristics of Ni–Ir and Pt–Ir hard coatings surface treated by pulsed Nd:YAG laser. Surface and Coatings Technology, 2010, 205, 1979-1984.	4.8	16

#	Article	IF	CITATIONS
37	Portable optical instrumentation for the evaluation of the onsite antioxidant scavenging capacity assay. Instrumentation Science and Technology, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0	1.8	O
38	Effects of hybrid surfactants on the quality and yield of graphene using a novel electrochemical-mechanical exfoliation process. International Journal of Advanced Manufacturing Technology, $0, 1$.	3.0	0