Louis A Derry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/987148/publications.pdf

Version: 2024-02-01

53751 53190 8,509 87 45 85 citations h-index g-index papers 89 89 89 7185 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Persistence of old soil carbon under changing climate: The role of mineral-organic matter interactions. Chemical Geology, 2022, 587, 120629.	1.4	17
2	Dynamic Contributions of Stratified Groundwater to Streams Controls Seasonal Variations of Streamwater Transit Times. Water Resources Research, 2022, 58, .	1.7	6
3	Resiliency of Silica Export Signatures When Low Order Streams Are Subject to Storm Events. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
4	Reflections on Earth surface research. Nature Reviews Earth & Environment, 2021, 2, 15-20.	12.2	3
5	Variations of Mg isotope geochemistry in soils over a Hawaiian 4 Myr chronosequence. Geochimica Et Cosmochimica Acta, 2021, 292, 94-114.	1.6	14
6	A first look at Ge/Si partitioning during amorphous silica precipitation: Implications for Ge/Si as a tracer of fluid-silicate interactions. Geochimica Et Cosmochimica Acta, 2021, 297, 158-178.	1.6	10
7	The future low-temperature geochemical data-scape as envisioned by the U.S. geochemical community. Computers and Geosciences, 2021, 157, 104933.	2.0	3
8	Subsoil organo-mineral associations under contrasting climate conditions. Geochimica Et Cosmochimica Acta, 2020, 270, 244-263.	1.6	46
9	A model for germanium-silicon equilibrium fractionation in kaolinite. Geochimica Et Cosmochimica Acta, 2020, 288, 199-213.	1.6	7
10	Thermal oxidation of carbon in organic matter rich volcanic soils: insights into SOC age differentiation and mineral stabilization. Biogeochemistry, 2019, 144, 291-304.	1.7	15
11	Organic acids and high soil CO2 drive intense chemical weathering of Hawaiian basalts: Insights from reactive transport models. Geochimica Et Cosmochimica Acta, 2019, 249, 173-198.	1.6	28
12	Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570, 228-231.	13.7	354
13	Effects of Dynamic Topography on the Cenozoic Carbonate Compensation Depth. Geochemistry, Geophysics, Geosystems, 2018, 19, 1025-1034.	1.0	23
14	Biological Cycling of Mineral Nutrients in a Temperate Forested Shale Catchment. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3204-3215.	1.3	6
15	Ge/Si ratios point to increased contribution from deeper mineral weathering to streams after forest conversion to cropland. Applied Geochemistry, 2018, 96, 24-34.	1.4	10
16	Colloidal transport in the G ordon G ulch catchment of the B oulder C reek CZO and its effect on $C\hat{a} \in \mathbb{Q}$ relationships for silicon. Water Resources Research, 2017, 53, 2368-2383.	1.7	18
17	Geochemical evolution of the <scp>C</scp> ritical <scp>Z</scp> one across variable time scales informs concentrationâ€discharge relationships: <scp>J</scp> emez <scp>R</scp> iver <scp>B</scp> asin <scp>C</scp> ritical <scp>Z</scp> one <scp>O</scp> bservatory. Water Resources Research, 2017, 53, 4169-4196.	1.7	57
18	Concentrationâ€Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and Evolution. Water Resources Research, 2017, 53, 8654-8659.	1.7	48

#	Article	IF	Citations
19	Colloid Mobilization and Seasonal Variability in a Semiarid Headwater Stream. Journal of Environmental Quality, 2017, 46, 88-95.	1.0	11
20	Temperature dependence of basalt weathering. Earth and Planetary Science Letters, 2016, 443, 59-69.	1.8	126
21	87Sr/86Sr, Ca/Sr, and Ge/Si ratios as tracers of solute sources and biogeochemical cycling at a temperate forested shale catchment, central Pennsylvania, USA. Chemical Geology, 2016, 445, 84-102.	1.4	28
22	CZ-tope at Susquehanna Shale Hills CZO: Synthesizing multiple isotope proxies to elucidate Critical Zone processes across timescales in a temperate forested landscape. Chemical Geology, 2016, 445, 103-119.	1.4	37
23	Causes and consequences of mid-Proterozoic anoxia. Geophysical Research Letters, 2015, 42, 8538-8546.	1.5	114
24	Appreciation of peer reviewers for 2014. Geochemistry, Geophysics, Geosystems, 2015, 16, 2473-2479.	1.0	0
25	⁸⁷ Sr/ ⁸⁶ Sr in recent accumulations of calcium sulfate on landscapes of hyperarid settings: A bimodal altitudinal dependence for northern <scp>C</scp> hile (19.5ðS–21.5°S). Geochemistry, Geophysics, Geosystems, 2015, 16, 4311-4328.	1.0	10
26	Ge/Si ratios indicating hydrothermal and sulfide weathering input to rivers of the Eastern Tibetan Plateau and Mt. Baekdu. Chemical Geology, 2015, 410, 40-52.	1.4	9
27	Neogene marine isotopic evolution and the erosion of Lesser Himalayan strata: Implications for Cenozoic tectonic history. Earth and Planetary Science Letters, 2015, 417, 142-150.	1.8	48
28	Magnesium Isotope Fractionation During Arid Pedogenesis on the Island of Hawaii (USA). Procedia Earth and Planetary Science, 2014, 10, 243-248.	0.6	10
29	Chemical weathering fluxes from volcanic islands and the importance of groundwater: The Hawaiian example. Earth and Planetary Science Letters, 2012, 339-340, 67-78.	1.8	80
30	Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines. Geochimica Et Cosmochimica Acta, 2011, 75, 978-1002.	1.6	89
31	Subcellular localization of silicon and germanium in grass root and leaf tissues by SIMS: evidence for differential and active transport. Biogeochemistry, 2011, 104, 237-249.	1.7	31
32	An intermediate $\hat{\mathbf{e}}$ complexity model for simulating marine biogeochemistry in deep time: Validation against the modern global ocean. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	4
33	Validation of an intermediate $\hat{\epsilon}$ complexity model for simulating marine biogeochemistry under anoxic conditions in the modern Black Sea. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	3
34	Germanium–silicon fractionation in a tropical, granitic weathering environment. Geochimica Et Cosmochimica Acta, 2010, 74, 1294-1308.	1.6	56
35	A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 2010, 294, 152-162.	1.8	322
36	On the significance of \hat{l} 13C correlations in ancient sediments. Earth and Planetary Science Letters, 2010, 296, 497-501.	1.8	67

#	Article	IF	CITATIONS
37	A glacial hangover. Nature, 2009, 458, 417-418.	13.7	8
38	Hydrothermal heat flow near the Main Central Thrust, central Nepal Himalaya. Earth and Planetary Science Letters, 2009, 286, 101-109.	1.8	40
39	Ca/Sr and 87Sr/86Sr ratios as tracers of Ca and Sr cycling in the Rio Icacos watershed, Luquillo Mountains, Puerto Rico. Chemical Geology, 2009, 267, 32-45.	1.4	74
40	Changing sources of strontium to soils and ecosystems across the Hawaiian Islands. Chemical Geology, 2009, 267, 64-76.	1.4	77
41	Sr isotopes as a tracer of weathering processes and dust inputs in a tropical granitoid watershed, Luquillo Mountains, Puerto Rico. Geochimica Et Cosmochimica Acta, 2009, 73, 25-43.	1.6	105
42	Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	101
43	A Simple Predictive Tool for Lower Brahmaputra River Basin Monsoon Flooding. Earth Interactions, 2007, 11, 1-11.	0.7	20
44	Importance of atmospheric inputs and Fe-oxides in controlling soil uranium budgets and behavior along a Hawaiian chronosequence. Chemical Geology, 2007, 244, 691-707.	1.4	53
45	Contributions from Earth's Atmosphere to Soil. Elements, 2007, 3, 333-338.	0.5	79
46	The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochemistry, 2007, 86, 189-199.	1.7	45
47	Elemental Speciation by Parallel Elemental and Molecular Mass Spectrometry and Peak Profile Matching. Analytical Chemistry, 2006, 78, 8445-8455.	3.2	9
48	Ge/Si and 87Sr/86Sr tracers of weathering reactions and hydrologic pathways in a tropical granitoid system. Journal of Geochemical Exploration, 2006, 88, 271-274.	1.5	23
49	ATMOSPHERIC SCIENCE: Fungi, Weathering, and the Emergence of Animals. Science, 2006, 311, 1386-1387.	6.0	8
50	Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature, 2005, 433, 728-731.	13.7	393
51	BIODIVERSITY: An Island of Evolutionary Exuberance. Science, 2004, 304, 53-53.	6.0	9
52	Proposed initiative would study Earth's weathering engine. Eos, 2004, 85, 265.	0.1	67
53	Geothermal fluxes of alkalinity in the Narayani river system of central Nepal. Geochemistry, Geophysics, Geosystems, 2004, 5, .	1.0	55
54	Multiple sources of lead in soils from a Hawaiian chronosequence. Chemical Geology, 2004, 209, 215-231.	1.4	29

#	Article	IF	CITATIONS
55	Erosion and the Rejuvenation of Weathering-derived Nutrient Supply in an Old Tropical Landscape. Ecosystems, 2003, 6, 762-772.	1.6	122
56	Electronic data publication in geochemistry. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	11
57	Germanium/silicon ratios in the Copper River Basin, Alaska: Weathering and partitioning in periglacial versus glacial environments. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	35
58	Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials. Water Research, 2003, 37, 1662-1666.	5.3	51
59	Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9639-9644.	3.3	68
60	Quartz control of high germanium/silicon ratios in geothermal waters. Geology, 2002, 30, 1019.	2.0	66
61	Germanium-silicon fractionation in the weathering environment. Geochimica Et Cosmochimica Acta, 2002, 66, 1525-1537.	1.6	145
62	Electronic data publication in geochemistry: A plea for "full disclosure― Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	1.0	2
63	Accretion of Asian dust to Hawaiian soils: isotopic, elemental, and mineral mass balances. Geochimica Et Cosmochimica Acta, 2001, 65, 1971-1983.	1.6	196
64	Hydrothermal source of radiogenic Sr to Himalayan rivers. Geology, 2001, 29, 803.	2.0	63
65	Refractory element mobility in volcanic soils. Geology, 2000, 28, 683.	2.0	292
66	Terrestrial paleorecords of Ge/Si cycling derived from lake diatoms. Chemical Geology, 2000, 168, 9-26.	1.4	32
67	Refractory element mobility in volcanic soils. Geology, 2000, 28, 683-686.	2.0	17
68	Changing sources of nutrients during four million years of ecosystem development. Nature, 1999, 397, 491-497.	13.7	1,104
69	Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soils. Oecologia, 1999, 121, 255-259.	0.9	95
70	The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochimica Et Cosmochimica Acta, 1999, 63, 1905-1925.	1.6	253
71	Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology, 1998, 26, 1015.	2.0	162
72	Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 1997, 390, 65-67.	13.7	353

#	Article	IF	Citations
73	Himalayan Weathering and Erosion Fluxes: Climate and Tectonic Controls., 1997,, 289-312.		37
74	The Late Oligocene-Early Miocene Himalayan belt Constraints deduced from isotopic compositions of Early Miocene turbidites in the Bengal Fan. Tectonophysics, 1996, 260, 109-118.	0.9	73
75	Neogene Himalayan weathering history and river87Sr86Sr: impact on the marine Sr record. Earth and Planetary Science Letters, 1996, 142, 59-74.	1.8	324
76	Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography, 1996, 11, 267-275.	3.0	100
77	Multiple \hat{l} 13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology, 1994, 22, 455.	2.0	112
78	A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303. Geological Magazine, 1994, 131, 767-783.	0.9	86
79	of organic carbon in the Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochimica Et Cosmochimica Acta, 1994, 58, 4809-4814.	1.6	132
80	Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the †Cambrian explosion'. Earth and Planetary Science Letters, 1994, 128, 671-681.	1.8	207
81	Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 1993, 364, 48-50.	13.7	154
82	Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. Geological Society Special Publication, 1993, 74, 603-621.	0.8	158
83	Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica Et Cosmochimica Acta, 1992, 56, 1317-1329.	1.6	520
84	"The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations― Geochimica Et Cosmochimica Acta, 1991, 55, 1181.	1.6	2
85	The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochimica Et Cosmochimica Acta, 1990, 54, 2965-2977.	1.6	408
86	Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica Et Cosmochimica Acta, 1989, 53, 2331-2339.	1.6	162
87	The Nd and Sr isotopic evolution of Proterozoic seawater. Geophysical Research Letters, 1988, 15, 397-400.	1.5	56