
Yee-Shan Ku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9871284/publications.pdf Version: 2024-02-01

VEE-SHAN KU

#	Article	IF	CITATIONS
1	The Identification of MATE Antisense Transcripts in Soybean Using Strand-Specific RNA-Seq Datasets. Genes, 2022, 13, 228.	1.0	1
2	The Poly-Glutamate Motif of GmMATE4 Regulates Its Isoflavone Transport Activity. Membranes, 2022, 12, 206.	1.4	4
3	Soybean secondary metabolites and flavors: The art of compromise among climate, natural enemies, and human culture. Advances in Botanical Research, 2022, , 295-347.	0.5	3
4	Using the Knowledge of Post-transcriptional Regulations to Guide Gene Selections for Molecular Breeding in Soybean. Frontiers in Plant Science, 2022, 13, 867731.	1.7	0
5	The Tiny Companion Matters: The Important Role of Protons in Active Transports in Plants. International Journal of Molecular Sciences, 2022, 23, 2824.	1.8	3
6	The Roles of Multidrug and Toxic Compound Extrusion (MATE) Transporters in Regulating Agronomic Traits. Agronomy, 2022, 12, 878.	1.3	5
7	AtGAP1 Promotes the Resistance to Pseudomonas syringae pv. tomato DC3000 by Regulating Cell-Wall Thickness and Stomatal Aperture in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 7540.	1.8	2
8	Differentially expressed microRNAs that target functional genes in mature soybean nodules. Plant Genome, 2021, 14, e20103.	1.6	8
9	Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe–Plant Interactions. Biology, 2021, 10, 477.	1.3	7
10	MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds. International Journal of Molecular Sciences, 2021, 22, 12017.	1.8	14
11	The Effects of Domestication on Secondary Metabolite Composition in Legumes. Frontiers in Genetics, 2020, 11, 581357.	1.1	42
12	The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi. Frontiers in Genetics, 2020, 11, 583954.	1.1	20
13	Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. International Journal of Molecular Sciences, 2020, 21, 9294.	1.8	10
14	Understanding the Composition, Biosynthesis, Accumulation and Transport of Flavonoids in Crops for the Promotion of Crops as Healthy Sources of Flavonoids for Human Consumption. Nutrients, 2020, 12, 1717.	1.7	74
15	Analysis of Soybean Long Non-Coding RNAs Reveals a Subset of Small Peptide-Coding Transcripts. Plant Physiology, 2020, 182, 1359-1374.	2.3	46
16	ABAS1 from soybean is a 1R-subtype MYB transcriptional repressor that enhances ABA sensitivity. Journal of Experimental Botany, 2020, 71, 2970-2981.	2.4	9
17	Possible Roles of Rhizospheric and Endophytic Microbes to Provide a Safe and Affordable Means of Crop Biofortification. Agronomy, 2019, 9, 764.	1.3	38
18	Transcriptomic reprogramming in soybean seedlings under salt stress. Plant, Cell and Environment, 2019, 42, 98-114.	2.8	111

Yee-Shan Ku

#	Article	IF	CITATIONS
19	Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses. International Journal of Molecular Sciences, 2018, 19, 3206.	1.8	368
20	Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods. International Journal of Molecular Sciences, 2015, 16, 24532-24554.	1.8	42
21	Using RNA-Seq Data to Evaluate Reference Genes Suitable for Gene Expression Studies in Soybean. PLoS ONE, 2015, 10, e0136343.	1.1	64
22	GmSAL1 Hydrolyzes Inositol-1,4,5-Trisphosphate and Regulates Stomatal Closure in Detached Leaves and Ion Compartmentalization in Plant Cells. PLoS ONE, 2013, 8, e78181.	1.1	9
23	Drought Stress and Tolerance in Soybean. , 0, , .		35