Shreyas Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9871012/publications.pdf

Version: 2024-02-01

	687363	996975
1,679	13	15
citations	h-index	g-index
	1.0	
19	19	3791
docs citations	times ranked	citing authors
	1,679 citations 19 docs citations	1,679 13 citations h-index 19 19

#	Article	IF	CITATIONS
1	Microparticle-Based Biochemical Sensing Using Optical Coherence Tomography and Deep Learning. ACS Nano, 2021, 15, 9764-9774.	14.6	10
2	Remote Monitoring of Microparticle Biosensors Using Optical Coherence Tomography., 2020,,.		1
3	Automated Monitoring for Optical Coherence Tomography-based Biosensing Using Deep Learning. , 2020, , .		0
4	The nanomaterial toolkit for neuroengineering. Nano Convergence, 2016, 3, 25.	12.1	20
5	Nanotechnology-Based Approaches for Guiding Neural Regeneration. Accounts of Chemical Research, 2016, 49, 17-26.	15.6	73
6	Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nature Chemical Biology, 2016, 12, 117-123.	8.0	36
7	Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer. Biomaterials, 2016, 81, 46-57.	11.4	92
8	Design, Synthesis, and Characterization of Graphene–Nanoparticle Hybrid Materials for Bioapplications. Chemical Reviews, 2015, 115, 2483-2531.	47.7	603
9	Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays. ACS Nano, 2015, 9, 3780-3790.	14.6	139
10	Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale, 2015, 7, 16571-16577.	5.6	108
11	Guiding Stem Cell Differentiation into Oligodendrocytes Using Grapheneâ€Nanofiber Hybrid Scaffolds. Advanced Materials, 2014, 26, 3673-3680.	21.0	265
12	Graphene: Guiding Stem Cell Differentiation into Oligodendrocytes Using Grapheneâ€Nanofiber Hybrid Scaffolds (Adv. Mater. 22/2014). Advanced Materials, 2014, 26, 3570-3570.	21.0	3
13	Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery. Journal of Materials Chemistry B, 2014, 2, 7685-7693.	5.8	42
14	Single Vehicular Delivery of siRNA and Small Molecules to Control Stem Cell Differentiation. Journal of the American Chemical Society, 2013, 135, 15682-15685.	13.7	63
15	Nanotopography-mediated Reverse Uptake for siRNA Delivery into Neural Stem Cells to Enhance Neuronal Differentiation. Scientific Reports, 2013, 3, 1553.	3.3	61
16	Generation of a Library of Nonâ€Toxic Quantum Dots for Cellular Imaging and siRNA Delivery. Advanced Materials, 2012, 24, 4014-4019.	21.0	80
17	Controlling Differentiation of Neural Stem Cells Using Extracellular Matrix Protein Patterns. Small, 2010, 6, 2509-2513.	10.0	83
18	Stem cell differentiation: Controlling Differentiation of Neural Stem Cells Using Extracellular Matrix Protein Patterns (Small 22/2010). Small, 2010, 6, 2508-2508.	10.0	О