Seda Torosyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9870779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aromatic and Heteroaromatic 4-Benzyl-4H-thieno[3,2-b]pyrrole-5-carbohydrazides. Russian Journal of Organic Chemistry, 2021, 57, 117-120.	0.8	2
2	NEW AMIDES OF N-BENZYL-4H-THIENO[3.2-b]PYRROLECARBOXYLIC ACIDS. , 2021, , 707.	0.0	0
3	Synthesis of 4-Benzylthieno[3,2-b]pyrrole Derivatives Containing 1,3,4-Oxadiazole and Azetidinone Fragments. Russian Journal of Organic Chemistry, 2021, 57, 1455-1460.	0.8	0
4	4H-Thieno[3,2-b]pyrrole-5-carbohydrazides and Their Derivatives. Russian Journal of Organic Chemistry, 2020, 56, 1545-1549.	0.8	3
5	New Carboxamides of the Thieno[3,2-b]pyrrole Series. Russian Journal of Organic Chemistry, 2020, 56, 1850-1853.	0.8	1
6	Synthesis of C3-Modified Carbapenems. Russian Journal of Organic Chemistry, 2020, 56, 7-10.	0.8	0
7	4H-Thieno[3,2-b]pyrrole-5-carboxylate Conjugates with Taurine and Its Tetrabutylammonium Salt. Russian Journal of Organic Chemistry, 2019, 55, 1902-1906.	0.8	1
8	New 4-Substituted 5-(1H-Pyrrol-2-ylmethyl)-4H-thieno[3,2-b]pyrroles and Their Reactions with N-Bromosuccinimide. Russian Journal of Organic Chemistry, 2019, 55, 1907-1911.	0.8	2
9	Synthesis and Electrophysical Properties of Methanofullerene with C1-Geminal Dimethoxyphosphoryl and Methoxycarbonyl Groups. Russian Journal of Organic Chemistry, 2018, 54, 1419-1421.	0.8	0
10	Synthesis of N-Substituted Methyl 4H-Thieno[3,2-b]pyrrole-5-carboxylates. Russian Journal of Organic Chemistry, 2018, 54, 912-917.	0.8	3
11	Ring-opening metathesis polymerization (ROMP) of fullerene-containing monomers in the presence of a first-generation Grubbs catalyst. Kinetics and Catalysis, 2017, 58, 111-121.	1.0	4
12	Synthesis of a conjugate of (R)-2,2-dichloro- N-(1-phenylethyl)acetamide with fullerene C60. Russian Journal of Organic Chemistry, 2017, 53, 1583-1585.	0.8	1
13	[2+4]Cycloadduct of fullerene C60 and 5,5-dimethoxy-1,2,3,4-tetrachlorocyclopentadiene. Russian Journal of Organic Chemistry, 2016, 52, 1692-1694.	0.8	0
14	Reaction of fullerene C60 with methyl (2Z)-2,4,4-trichloro-3-methoxybut-2-enoate. Russian Journal of Organic Chemistry, 2016, 52, 456-457.	0.8	2
15	Synthesis of chloramphenicol conjugate with fullerene C60. Russian Journal of Organic Chemistry, 2016, 52, 587-589.	0.8	2
16	Lipophilic fullerenes. Russian Journal of Organic Chemistry, 2015, 51, 1057-1060.	0.8	3
17	Synthesis and electrophysical properties of the fullerene C60–1,3,5-trimethoxybenzene conjugate. Russian Journal of Organic Chemistry, 2015, 51, 940-942.	0.8	2