

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986992/publications.pdf Version: 2024-02-01

LUN HE

#	Article	IF	CITATIONS
1	Porous Field-Effect Transistors Based on a Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 1360-1363.	6.6	374
2	High Efficiency Nondoped Deep-Blue Organic Light Emitting Devices Based on Imidazole-ï€-triphenylamine Derivatives. Chemistry of Materials, 2012, 24, 61-70.	3.2	313
3	Thioether Side Chains Improve the Stability, Fluorescence, and Metal Uptake of a Metal–Organic Framework. Chemistry of Materials, 2011, 23, 2940-2947.	3.2	145
4	White Light Emission and Second Harmonic Generation from Secondary Group Participation (SGP) in a Coordination Network. Journal of the American Chemical Society, 2012, 134, 1553-1559.	6.6	142
5	Design and solvothermal synthesis of luminescent copper(i)-pyrazolate coordination oligomer and polymer frameworks. Chemical Communications, 2006, , 2845.	2.2	132
6	Convenient Detection of Pd(II) by a Metal–Organic Framework with Sulfur and Olefin Functions. Journal of the American Chemical Society, 2013, 135, 7807-7810.	6.6	113
7	Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 12116-12123.	7.2	97
8	Synthesis of nitrogen-doped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light. Chemical Engineering Journal, 2013, 226, 123-130.	6.6	86
9	A reaction-based near-infrared fluorescent sensor for Cu2+ detection in aqueous buffer and its application in living cells and tissues imaging. Biosensors and Bioelectronics, 2017, 94, 24-29.	5.3	77
10	Novel Thermochromism Relating to Supramolecular Cuprophilic Interaction: Design, Synthesis, and Luminescence of Copper(I) Pyrazolate Trimer and Polymer. Inorganic Chemistry, 2008, 47, 3471-3473.	1.9	75
11	Second Ligand-Directed Assembly of Photoluminescent Zn(II) Coordination Frameworks. Crystal Growth and Design, 2007, 7, 1508-1513.	1.4	74
12	Halogen–C ₂ H ₂ Binding in Ultramicroporous Metal–Organic Frameworks (MOFs) for Benchmark C ₂ H ₂ /CO ₂ Separation Selectivity. Chemistry - A European Journal, 2020, 26, 4923-4929.	1.7	72
13	Novel Synthesis of Birnessite-Type MnO ₂ Nanostructure for Water Treatment and Electrochemical Capacitor. Industrial & Engineering Chemistry Research, 2013, 52, 9586-9593.	1.8	64
14	Multifunctional Free-Standing Membrane from the Self-assembly of Ultralong MnO ₂ Nanowires. ACS Applied Materials & Interfaces, 2013, 5, 7458-7464.	4.0	63
15	Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Materials Letters, 2012, 86, 18-20.	1.3	61
16	Construction of an alkaline phosphatase-specific two-photon probe and its imaging application in living cells and tissues. Biomaterials, 2017, 140, 220-229.	5.7	57
17	Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Topics in Current Chemistry, 2020, 378, 27	3.0	57
18	Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule. Journal of Solid State Chemistry, 2009, 182, 1821-1826.	1.4	54

#	Article	IF	CITATIONS
19	Ultra-sensitive fluorescent probes for hypochlorite acid detection and exogenous/endogenous imaging of living cells. Chemical Communications, 2018, 54, 7967-7970.	2.2	50
20	Mixed-Valence CullCul15117 Cluster Builds up a 3D Metalâ^'Organic Framework with Paramagnetic and Thermochromic Characteristics. Inorganic Chemistry, 2008, 47, 7948-7950.	1.9	49
21	Metalation Triggers Single Crystalline Order in a Porous Solid. Journal of the American Chemical Society, 2016, 138, 14852-14855.	6.6	48
22	In situ production of silver nanoparticles on an aldehyde-equipped conjugated porous polymer and subsequent heterogeneous reduction of aromatic nitro groups at room temperature. Chemical Communications, 2015, 51, 12197-12200.	2.2	45
23	A semiconducting gyroidal metal-sulfur framework for chemiresistive sensing. Journal of Materials Chemistry A, 2017, 5, 16139-16143.	5.2	44
24	Room-temperature acetylene hydration by a Hg(<scp>ii</scp>)-laced metal–organic framework. Chemical Communications, 2015, 51, 10941-10944.	2.2	43
25	Improving stability against desolvation and mercury removal performance of Zr(<scp>iv</scp>)–carboxylate frameworks by using bulky sulfur functions. Journal of Materials Chemistry A, 2018, 6, 1648-1654.	5.2	43
26	An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg ²⁺ detection and imaging applications. Analyst, The, 2019, 144, 1353-1360.	1.7	43
27	Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coordination Chemistry Reviews, 2022, 450, 214235.	9.5	42
28	Immobilization of Volatile and Corrosive Iodine Monochloride (ICI) and I ₂ Reagents in a Stable Metal–Organic Framework. Inorganic Chemistry, 2014, 53, 6837-6843.	1.9	39
29	A fast-response fluorescent probe for hypochlorous acid detection and its application in exogenous and endogenous HOCI imaging of living cells. Chemical Communications, 2017, 53, 12349-12352.	2.2	37
30	An ultra-sensitive ratiometric fluorescent probe for hypochlorous acid detection by the synergistic effect of AIE and TBET and its application of detecting exogenous/endogenous HOCl in living cells. Journal of Materials Chemistry B, 2019, 7, 5125-5131.	2.9	36
31	A Boilingâ€Waterâ€Stable, Tunable Whiteâ€Emitting Metal–Organic Framework from Softâ€Imprint Synthesis. Chemistry - A European Journal, 2016, 22, 1597-1601.	1.7	33
32	Energy transfer properties and temperature-dependent luminescence of Ca14Al10Zn6O35: Dy3+, Mn4+ phosphors. Journal of Materials Science, 2016, 51, 4201-4212.	1.7	32
33	A Thiol-Functionalized UiO-67-Type Porous Single Crystal: Filling in the Synthetic Gap. Inorganic Chemistry, 2019, 58, 1462-1468.	1.9	31
34	Dualâ€Redox Sites Guarantee Highâ€Capacity Sodium Storage in Twoâ€Dimension Conjugated Metal–Organic Frameworks. Advanced Functional Materials, 2022, 32, .	7.8	31
35	A nanoporous graphene analog for superfast heavy metal removal and continuous-flow visible-light photoredox catalysis. Journal of Materials Chemistry A, 2017, 5, 20180-20187.	5.2	30
36	Highly Crystalline Flower-Like Covalent-Organic Frameworks Enable Highly Stable Zinc Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3715-3723.	2.5	29

#	Article	IF	CITATIONS
37	Separator modified by Co-porphyrin based Zr-MOF@CNT composite enabling efficient polysulfides catalytic conversion for advanced lithium-sulfur batteries. Electrochimica Acta, 2021, 398, 139317.	2.6	26
38	Synthesis of g-C ₃ N ₄ /Silica Gels for White-Light-Emitting Devices. Particle and Particle Systems Characterization, 2017, 34, 1600258.	1.2	25
39	Centripetal molecules as multifunctional building blocks for coordination networks. Chemical Communications, 2007, , 4779.	2.2	24
40	Coordination Networks from Cu Cations and Tetrakis(methylthio)benzenedicarboxylic Acid: Tunable Bonding Patterns and Selective Sensing for NH ₃ Gas. Inorganic Chemistry, 2010, 49, 10191-10198.	1.9	23
41	MnO2 Nanosheet-Assisted Hydrothermal Synthesis of β-MnO2 Branchy Structures. Materials Letters, 2012, 79, 288-291.	1.3	23
42	Solid structure and photoluminescence of zinc(II) multiplex with heptadentate salicylideneamine as primary ligand. Inorganic Chemistry Communication, 2006, 9, 205-207.	1.8	22
43	Effects of Accelerator Alkyl Chain Length on the Microvia Filling Performance in Copper Superconformal Electroplating. Journal of the Electrochemical Society, 2019, 166, D104-D112.	1.3	22
44	Synthesis, characterization and biological evaluation of ruthenium(II) complexes [Ru(dtzp)(dppz)Cl] + and [Ru(dtzp)(dppz)CH 3 CN] 2+ for photodynamic therapy. Dyes and Pigments, 2017, 136, 416-426.	2.0	21
45	Real-Time Monitoring of Self-Aggregation of β-Amyloid by a Fluorescent Probe Based on Ruthenium Complex. Analytical Chemistry, 2020, 92, 2953-2960.	3.2	21
46	Functional shakeup of metal–organic frameworks: the rise of the sidekick. CrystEngComm, 2015, 17, 9254-9263.	1.3	20
47	Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 12223-12230.	1.6	20
48	Dramatic improvement of stability by <i>in situ</i> linker cyclization of a metal–organic framework. Chemical Communications, 2018, 54, 9470-9473.	2.2	19
49	Dense Alkyne Arrays of a Zr(IV) Metal–Organic Framework Absorb Co ₂ (CO) ₈ for Functionalization. Inorganic Chemistry, 2020, 59, 5626-5631.	1.9	18
50	Dense Dithiolene Units on Metal–Organic Frameworks for Mercury Removal and Superprotonic Conduction. ACS Applied Materials & Interfaces, 2022, 14, 1070-1076.	4.0	17
51	A Stable 2D Zr(IV)-Based Metal–Organic Framework (USTS-7) for Selective Sensing of Cr ₂ O ₇ ^{2–} in Aqueous Solution. Inorganic Chemistry, 2020, 59, 17884-17888.	1.9	15
52	1D tubular and 2D roof-like coordination polymers based on [Zn(Pdc)] helices: Syntheses, structures and photoluminescence. Inorganic Chemistry Communication, 2008, 11, 1094-1096.	1.8	14
53	CuCN Pillars Induce Face-to-Face π-Overlap of Anthracene-Based Thioether Molecules within a Hybrid Coordination Network. Crystal Growth and Design, 2008, 8, 1468-1470.	1.4	14
54	Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance. Journal of Solid State Chemistry, 2013, 198, 371-378.	1.4	14

#	Article	IF	CITATIONS
55	Highly Polarizable Triiodide Anions (I ₃ [–]) as Cross-Linkers for Coordination Polymers: Closing the Semiconductive Band Gap. Inorganic Chemistry, 2015, 54, 6087-6089.	1.9	14
56	Sulfur Chemistry for Stable and Electroactive Metalâ€Organic Frameworks: The Crosslinking Story. Chemistry - A European Journal, 2019, 25, 8654-8662.	1.7	13
57	An air-stable anionic two-dimensional semiconducting metal-thiolate network and its exfoliation into ultrathin few-layer nanosheets. Chemical Communications, 2020, 56, 3645-3648.	2.2	13
58	Ruthenium stabilized on transition metal-on-transition metal oxide nanoparticles for naphthalene hydrogenation. International Journal of Hydrogen Energy, 2018, 43, 15055-15063.	3.8	12
59	Enantiomerism, diastereomerism and thermochromism in two Cu ₇ I ₄ cluster-based coordination polymers. Journal of Materials Chemistry C, 2019, 7, 15136-15140.	2.7	12
60	A Bumper Crop of Boiling-Water-Stable Metal–Organic Frameworks from Controlled Linker Sulfuration. Inorganic Chemistry, 2020, 59, 7097-7102.	1.9	12
61	Linker Deficiency, Aromatic Ring Fusion, and Electrocatalysis in a Porous Ni ₈ -Pyrazolate Network. Inorganic Chemistry, 2021, 60, 161-166.	1.9	12
62	Crystallinity after decarboxylation of a metal–carboxylate framework: indestructible porosity for catalysis. Dalton Transactions, 2020, 49, 11902-11910.	1.6	10
63	Conjugated crosslinks boost the conductivity and stability of a single crystalline metal–organic framework. Chemical Communications, 2021, 57, 187-190.	2.2	10
64	Interconnected NiCo ₂ O ₄ nanosheet arrays grown on carbon cloth as a host, adsorber and catalyst for sulfur species enabling high-performance Li–S batteries. Nanoscale Advances, 2021, 3, 1690-1698.	2.2	10
65	Metal-organic frameworks constructed from trivalent lanthanide nodes (Eu3+, Tb3+, and Dy3+) and thiophenethio-functionalized linker with photoluminescent response selective towards Ag+ ions. Dyes and Pigments, 2022, 198, 109999.	2.0	10
66	Janus triple tripods build up a microporous manifold for HgCl ₂ and I ₂ uptake. Chemical Communications, 2019, 55, 5091-5094.	2.2	9
67	Electrical and magnetic properties of a radical-based Co(II) coordination complex with C Hâ‹⁻ï€ and ï€â‹⁻ï€ supramolecular interactions. Inorganic Chemistry Communication, 2019, 103, 149-153.	1.8	9
68	Building Conjugated Donor–Acceptor Cross-Links into Metal–Organic Frameworks for Photo- and Electroactivity. ACS Applied Materials & Interfaces, 2020, 12, 19201-19209.	4.0	9
69	Bis-(sodium sulfoethyl)-disulfide: A Promising Accelerator for Super-conformal Copper Electrodeposition with Wide Operating Concentration Ranges. Journal of the Electrochemical Society, 2020, 167, 042508.	1.3	9
70	Enhanced stability and colorimetric detection on Ag(<scp>i</scp>) ions of a methylthio-functionalized Zn(<scp>ii</scp>) metal–organic framework. Journal of Materials Chemistry C, 2021, 9, 5088-5092.	2.7	9
71	Anionic hydrogen-bonded chains , coexisting with Ni(II) complexes of polyamine-based ligands. Inorganic Chemistry Communication, 2006, 9, 326-328.	1.8	8
72	Thiol-Containing Metal–Organic Framework-Decorated Carbon Cloth as an Integrated Interlayer–Current Collector for Enhanced Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 31942-31950.	4.0	8

#	Article	IF	CITATIONS
73	Beadwork and Network: Strings of Silver Ions Stitch Large-ï€ Pyrazolate Patches into a Two-dimensional Sheet. Crystal Growth and Design, 2018, 18, 3713-3718.	1.4	7
74	Highly enhanced hydrated proton conductivity by combination of post-synthetic oxidation and acidification in a zirconium-organic framework. Journal of Solid State Chemistry, 2020, 285, 121234.	1.4	7
75	Hydrated proton conduction and luminescence of a carboxylate and sulfonate-included lead(II) coordination polymer. Journal of Solid State Chemistry, 2020, 287, 121325.	1.4	7
76	Flexible side arms of ditopic linker as effective tools to boost proton conductivity of Ni8-pyrazolate metal-organic framework. Chinese Chemical Letters, 2022, 33, 3227-3230.	4.8	7
77	Anion-directed structures and luminescences of two Cu(I) coordination polymers based on bipyrazole. Inorganic Chemistry Communication, 2019, 101, 121-124.	1.8	6
78	Superprotonic conduction of intrinsically zwitterionic microporous polymers based on easy-to-make squaraine, croconaine and rhodizaine dyes. Nanoscale Advances, 2022, 4, 2922-2928.	2.2	6
79	Two homochiral crystals of anion-directed Cu(I) and Zn(II) helical coordination polymers. Journal of Solid State Chemistry, 2019, 277, 448-453.	1.4	5
80	Frontispiece: Sulfur Chemistry for Stable and Electroactive Metal-Organic Frameworks: The Crosslinking Story. Chemistry - A European Journal, 2019, 25, .	1.7	4
81	Symmetrically backfolded molecules emulating the self-similar features of a Sierpinski triangle. Organic and Biomolecular Chemistry, 2019, 17, 6032-6037.	1.5	4
82	Invisible Silver Guests Boost Order in a Framework That Cyclizes and Deposits Ag ₃ Sb Nanodots. Inorganic Chemistry, 2021, 60, 5757-5763.	1.9	4
83	Construction and investigation of chiral and photoluminescent Metal-Organic framework based on Zn(II) ions and achiral methoxy-functionalized benzimidazolate linkers. Inorganic Chemistry Communication, 2021, 131, 108791.	1.8	4
84	A Ferrocene Metal–Organic Framework Solid for Fe-Loaded Carbon Matrices and Nanotubes: High-Yield Synthesis and Oxygen Reduction Electrocatalysis. Inorganic Chemistry, 2021, 60, 17315-17324.	1.9	4
85	Syntheses, structures and Br2 uptake of Cu(I)-bipyrazole frameworks. Journal of Solid State Chemistry, 2021, 302, 122458.	1.4	3
86	A Porous and Solution-Processable Molecular Crystal Stable at 200 °C: The Surprising Donor–Acceptor Impact. Crystal Growth and Design, 2019, 19, 7411-7419.	1.4	2
87	Structure, Luminescent Sensing and Proton Conduction of a Boiling-Water-Stable Zn(II) Metal-Organic Framework. Molecules, 2021, 26, 5044.	1.7	2
88	Telltale diamagnetism at 50 K of a coordination polymer system. Materials Research Letters, 2022, 10, 496-500.	4.1	2
89	Isolation and studies of a thioether-functionalized pyrazole derived Cu(i)-based cyclic trinuclear complex and its coordination polymers with [Cu2I2] and [BiBr3] nodes. Journal of Materials Chemistry C, 2021, 9, 10288-10294.	2.7	1
90	Synthesis of a Thiol Building Block for the Crystallization of a Semiconducting Gyroidal Metal-sulfur Framework. Journal of Visualized Experiments, 2018, , .	0.2	0