
Taro Ueda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986912/publications.pdf Version: 2024-02-01

TARO LIEDA

#	Article	IF	CITATIONS
1	Effects of Surface Modification of Platinum Electrodes with Gold on Hydrogen-Sensing Properties of Diode-Type Sensors. , 2022, 1, 013602.		64
2	Improved Toluene Response of Mixed-Potential Type YSZ-Based Gas Sensors Using CeO ₂ -Added Au Electrodes. , 2022, 1, 013604.		64
3	Effects of catalytic combustion behavior and adsorption/desorption properties on ethanol-sensing characteristics of adsorption/combustion-type gas sensors. Journal of Asian Ceramic Societies, 2021, 9, 1015-1030.	2.3	2
4	Effects of Gas Adsorption Properties of an Au-Loaded Porous In ₂ O ₃ Sensor on NO ₂ -Sensing Properties. ACS Sensors, 2021, 6, 4019-4028.	7.8	33
5	Effects of noble-metal loading and ultraviolet-light irradiation on gas-sensing properties of porous indium oxide films at room temperature. Journal of the Ceramic Society of Japan, 2021, 129, 676-682.	1.1	5
6	Enhanced NO2-Sensing Properties of Au-Loaded Porous In2O3 Gas Sensors at Low Operating Temperatures. Chemosensors, 2020, 8, 72.	3.6	19
7	Synergistic Effects of PdO <i>_x</i> –CuO <i>_x</i> Loadings on Methyl Mercaptan Sensing of Porous WO ₃ Microspheres Prepared by Ultrasonic Spray Pyrolysis. ACS Applied Materials & Interfaces, 2020, 12, 41728-41739.	8.0	28
8	Toluene-sensing Properties of Mixed-potential Type Yttria-stabilized Zirconia-based Gas Sensors Attached with Thin CeO ₂ -added Au Electrodes. Analytical Sciences, 2020, 36, 287-290.	1.6	3
9	Nanostructured Pr-doped Ceria (PCO) thin films as sensing electrodes in solid-electrolyte type gas sensors with enhanced toluene sensitivity. Sensors and Actuators B: Chemical, 2020, 317, 128037.	7.8	21
10	Properties and potential use of biochars from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. Journal of Material Cycles and Waste Management, 2019, 21, 98-106.	3.0	16
11	Effects of Pt loading onto SnO2 electrodes on CO-sensing properties and mechanism of potentiometric gas sensors utilizing an anion-conducting polymer electrolyte. Sensors and Actuators B: Chemical, 2019, 300, 127041.	7.8	27
12	Improvement in NO2 Sensing Properties of Semiconductor-Type Gas Sensors by Loading of Au Into Porous In2O3 Powders. Frontiers in Materials, 2019, 6, .	2.4	9
13	Potentiometric CO sensors using anion-conducting polymer electrolyte: Effects of the kinds of noble metal-loaded metal oxides as sensing-electrode materials on CO-sensing properties. Sensors and Actuators B: Chemical, 2019, 287, 42-52.	7.8	26
14	Enhancement of methylmercaptan sensing response of WO3 semiconductor gas sensors by gas reactivity and gas diffusivity. Sensors and Actuators B: Chemical, 2018, 273, 826-833.	7.8	39
15	Enhanced catalytic activity and thermal stability of lipase bound to oxide nanosheets. RSC Advances, 2018, 8, 20347-20352.	3.6	5
16	Microstructural control of porous In2O3 powders prepared by ultrasonic-spray pyrolysis employing self-synthesized polymethylmethacrylate microspheres as a template and their NO2-sensing properties. Sensors and Actuators B: Chemical, 2017, 244, 992-1003.	7.8	30
17	Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode. Sensors and Actuators B: Chemical, 2017, 252, 268-276.	7.8	36
18	Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation. Sensors and Actuators B: Chemical, 2017, 253, 630-640.	7.8	88

Taro Ueda

#	Article	IF	CITATIONS
19	Enhanced CO Response of NASICON-based Gas Sensors Using Oxide-added Pt Sensing Electrode at Low Temperature Operation. Electrochemistry, 2017, 85, 174-178.	1.4	5
20	Potentiometric Carbon Monoxide Sensors Using an Anion-Conducting Polymer Electrolyte and Au-Loaded SnO ₂ Electrodes. Journal of the Electrochemical Society, 2016, 163, B300-B308.	2.9	24
21	Effects of composition and structure of sensing electrode on NO2 sensing properties of mixed potential-type YSZ-based gas sensors. Sensors and Actuators B: Chemical, 2016, 237, 247-255.	7.8	25
22	CO-sensing properties of a NASICON-based gas sensor attached with Pt mixed with Bi2O3 as a sensing electrode. Electrochimica Acta, 2015, 155, 8-15.	5.2	28
23	CO-sensing Properties of Potentiometric Gas Sensors Using an Anion-conducting Polymer Electrolyte and Au-loaded Metal Oxide Electrodes. Electrochimica Acta, 2015, 166, 232-243.	5.2	30
24	A Stable Sensing-Electrode Material in Reducing Atmosphere at High Temperature for Zirconia-Based Amperometric NOx Sensor. Electrochemistry, 2013, 81, 74-76.	1.4	8
25	Amperometric-type NOx sensor based on YSZ electrolyte and La-based perovskite-type oxide sensing electrode. Journal of the Ceramic Society of Japan, 2010, 118, 180-183.	1.1	14
26	Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode. Ionics, 2008, 14, 15-25.	2.4	24
27	Improving NO[sub 2] Sensitivity by Adding WO[sub 3] during Processing of NiO Sensing-Electrode of Mixed-Potential-Type Zirconia-Based Sensor. Journal of the Electrochemical Society, 2007, 154, J246.	2.9	42
28	Dependence of NO2 sensitivity on thickness of oxide-sensing electrodes for mixed-potential-type sensor using stabilized zirconia. lonics, 2007, 12, 331-337.	2.4	32
29	Dependence of NO2 sensitivity on thickness of oxide-sensing electrodes for mixed-potential-type sensor using stabilized zirconia. Ionics, 0, , .	2.4	0