

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wide Linear Range Strain Sensor Enabled by the Nonâ€Newtonian Fluid for Bioâ€Signals Monitoring. Advanced Engineering Materials, 2022, 24, .	1.6	6
2	Epitaxial Growth of Leadâ€Free 2D Cs ₃ Cu ₂ I ₅ Perovskites for Highâ€Performance UV Photodetectors. Small, 2022, 18, .	5.2	28
3	Self-powered photodetectors based on stacked WSe2/graphene/SnS2 p-g-n heterostructures. Journal of Alloys and Compounds, 2022, 920, 165974.	2.8	7
4	Strain loading dependent optoelectronic characteristics in CdS micro/nanowires. Journal of Alloys and Compounds, 2021, 857, 157489.	2.8	2
5	Controlled Doping Engineering in 2D MoS ₂ Crystals toward Performance Augmentation of Optoelectronic Devices. ACS Applied Materials & Interfaces, 2021, 13, 31861-31869.	4.0	16
6	Polymer electrets and their applications. Journal of Applied Polymer Science, 2021, 138, 50406.	1.3	43
7	Novel and dual-mode strain-detecting performance based on a layered NiO/ZnO p–n junction for flexible electronics. Journal of Materials Chemistry C, 2020, 8, 1466-1474.	2.7	12
8	High-performance epidermal strain sensor based on macro-defect graphene foams. Sensors and Actuators A: Physical, 2020, 303, 111721.	2.0	10
9	Band Structure Engineering in MoS ₂ Based Heterostructures toward Highâ€Performance Phototransistors. Advanced Optical Materials, 2020, 8, 2000430.	3.6	28
10	Growth of Nb-Doped Monolayer WS ₂ by Liquid-Phase Precursor Mixing. ACS Nano, 2019, 13, 10768-10775.	7.3	102
11	Preparation of multifunctional PLZT nanowires and their applications in piezocatalysis and transparent flexible films. Journal of Alloys and Compounds, 2019, 811, 152063.	2.8	15
12	High-performance ultra-violet phototransistors based on CVT-grown high quality SnS ₂ flakes. Nanoscale Advances, 2019, 1, 3973-3979.	2.2	29
13	High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors. Nano Letters, 2019, 19, 5595-5603.	4.5	41
14	In situ physical examination of Bi2S3 nanowires with a microscope. Journal of Alloys and Compounds, 2019, 798, 628-634.	2.8	9
15	2D semiconductors towards high-performance ultraviolet photodetection. Journal Physics D: Applied Physics, 2019, 52, 303002.	1.3	22
16	The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater. Nano Energy, 2019, 59, 372-379.	8.2	154
17	Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga ₂ In ₄ S ₉ toward Highâ€Performance UV Photodetection. Advanced Materials, 2019, 31, e1806306.	11.1	90
18	Controllable Carrier Type in Boron Phosphide Nanowires Toward Homostructural Optoelectronic Devices. ACS Applied Materials & Interfaces, 2018, 10, 10296-10303.	4.0	20

QI ZHANG

#	Article	IF	CITATIONS
19	Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018, 17, 535-542.	13.3	286
20	2D Layered Materialâ€Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 2018, 28, 1706587.	7.8	279
21	Tunneling Diode Based on WSe ₂ /SnS ₂ Heterostructure Incorporating High Detectivity and Responsivity. Advanced Materials, 2018, 30, 1703286.	11.1	293
22	Selfâ€Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1800181.	7.8	86
23	2D Ternary Chalcogenides. Advanced Optical Materials, 2018, 6, 1800058.	3.6	114
24	Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 2018, 51, 45-53.	8.2	209
25	Stoichiometric Effect on Optoelectronic Properties of Compositionâ€Tunable CdS _{1â°'} <i>_x</i> Se <i>_x</i> Nanowires. Advanced Optical Materials, 2017, 5, 1600877.	3.6	13
26	Topological Crystalline Insulator SnTe/Si Vertical Heterostructure Photodetectors for High-Performance Near-Infrared Detection. ACS Applied Materials & Interfaces, 2017, 9, 14067-14077.	4.0	61
27	Performance-enhancing ultraviolet photodetectors established on individual In ₂ O ₃ nanowires via coating a CuO layer. Materials Research Express, 2017, 4, 045018.	0.8	9
28	Veritable electronic characteristics in ZnO nanowire circuits uncovered by the four-terminal method at a low temperature. AIP Advances, 2017, 7, 045015.	0.6	0
29	Performanceâ€Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnOâ€Nanowire Hybrid Structures. Advanced Optical Materials, 2017, 5, 1700206.	3.6	96
30	Vertical heterostructures based on SnSe ₂ /MoS ₂ for high performance photodetectors. 2D Materials, 2017, 4, 025048.	2.0	183
31	Ultrathin 2D GeSe ₂ Rhombic Flakes with High Anisotropy Realized by Van der Waals Epitaxy. Advanced Functional Materials, 2017, 27, 1703858.	7.8	95
32	High—Performance Solarâ€Blind Deep Ultraviolet Photodetector Based on Individual Singleâ€Crystalline Zn ₂ GeO ₄ Nanowire. Advanced Functional Materials, 2016, 26, 704-712.	7.8	163
33	Largeâ€6ize Growth of Ultrathin SnS ₂ Nanosheets and High Performance for Phototransistors. Advanced Functional Materials, 2016, 26, 4405-4413.	7.8	279
34	Strain Driven Spectral Broadening of Pb Ion Exchanged CdS Nanowires. Small, 2016, 12, 874-881.	5.2	55
35	In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chemical Society Reviews, 2016, 45, 2694-2713.	18.7	30
36	Ternary Ta ₂ NiSe ₅ Flakes for a Highâ€Performance Infrared Photodetector. Advanced Functional Materials, 2016, 26, 8281-8289.	7.8	112

QI ZHANG

#	Article	IF	CITATIONS
37	Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition. Nano Research, 2016, 9, 3848-3857.	5.8	20
38	One-step synthesis of p-type GaSe nanoribbons and their excellent performance in photodetectors and phototransistors. Journal of Materials Chemistry C, 2016, 4, 7817-7823.	2.7	39
39	Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family. Advanced Science, 2016, 3, 1600177.	5.6	181
40	ZnSe nanostructures: Synthesis, properties and applications. Progress in Materials Science, 2016, 83, 472-535.	16.0	128
41	Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries. Science Bulletin, 2016, 61, 227-235.	4.3	74
42	High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. Journal of Materials Chemistry C, 2016, 4, 2111-2116.	2.7	113
43	Ultrathin SnSe ₂ Flakes Grown by Chemical Vapor Deposition for Highâ€Performance Photodetectors. Advanced Materials, 2015, 27, 8035-8041.	11.1	460
44	Polar-surface-driven growth of ZnS microsprings with novel optoelectronic properties. NPG Asia Materials, 2015, 7, e213-e213.	3.8	9
45	Bias-tunable dual-mode ultraviolet photodetectors for photoelectric tachometer. Applied Physics Letters, 2014, 104, .	1.5	29
46	Investigation of electron beam detection properties of ZnO nanowire based back-to-back double Schottky diode. RSC Advances, 2014, 4, 12743.	1.7	8
47	Simple fabrication of a ZnO nanorod array UV detector with a high performance. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 61, 180-184.	1.3	45
48	Oneâ€Dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics. Advanced Materials, 2013, 25, 3017-3037.	11.1	212
49	Saturated blue-violet electroluminescence from single ZnO micro/nanowire and p-GaN film hybrid light-emitting diodes. Applied Physics Letters, 2013, 102, .	1.5	29
50	Photoluminescence and highly selective photoresponse of ZnO nanorod arrays. Optical Materials, 2013, 35, 1532-1537.	1.7	17
51	Electrically pumped lasing from single ZnO micro/nanowire and poly(3,4-ethylenedioxythiophene):poly(styrenexulfonate) hybrid heterostructures. Applied Physics Letters, 2012, 101, 043119.	1.5	21
52	Temperature-dependent electron transport in ZnO micro/nanowires. Journal of Applied Physics, 2012, 112, .	1.1	13
53	Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene. Nano Letters, 2012, 12, 3711-3715.	4.5	235
54	A novel logic switch based on individual ZnO nanotetrapods. Nanoscale, 2011, 3, 2166.	2.8	21

4

QI ZHANG

#	Article	IF	CITATIONS
55	Diameter-dependent internal gain in ZnO micro/nanowires under electron beam irradiation. Nanoscale, 2011, 3, 3060.	2.8	10
56	Multi-zone light emission in a one-dimensional ZnO waveguide with hybrid structures. Optical Materials Express, 2011, 1, 173.	1.6	3
57	Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: Optical, electrical, and magnetic properties. Nanoscale, 2011, 3, 654-660.	2.8	37
58	Influence of electromechanical coupling and electron irradiation on the conductivity of individual ZnO nanowire. Solid State Sciences, 2011, 13, 658-661.	1.5	5
59	Negative differential resistance in ZnO nanowires induced by surface state modulation. Materials Chemistry and Physics, 2011, 131, 258-261.	2.0	8
60	Electron irradiation effect on the Schottky gate of ZnO nanowires-based field effect transistors. Micro and Nano Letters, 2011, 6, 437.	0.6	3
61	Utilization of electron beam to modulate electron injection over Schottky barrier. Current Applied Physics, 2011, 11, 586-589.	1.1	8
62	Tuning electronic transport of ZnO micro/nanowires by a transverse electric field. Applied Physics Letters, 2011, 99, 063105.	1.5	5
63	Combined Field and Thermionic Emission Process in ZnO Nanostructure Cold Emission Cathode. Materials Science Forum, 2010, 654-656, 1138-1141.	0.3	3
64	Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure. Applied Physics Letters, 2010, 96, .	1.5	34
65	Self-catalytic Synthesis, Structures, and Properties of High-Quality Tetrapod-Shaped ZnO Nanostructures. Crystal Growth and Design, 2009, 9, 1863-1868.	1.4	31
66	Fabrication and Optical Properties of Mn Doped ZnS Nanowires. Advanced Materials Research, 0, 236-238, 2211-2215.	0.3	0