Evgeny E Bezsonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9868145/publications.pdf

Version: 2024-02-01

430874 501196 40 939 18 28 g-index citations h-index papers 41 41 41 689 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Vaccination against Atherosclerosis: Is It Real?. International Journal of Molecular Sciences, 2022, 23, 2417.	4.1	2
2	Atherosclerosis in HIV Patients: What Do We Know so Far?. International Journal of Molecular Sciences, 2022, 23, 2504.	4.1	13
3	Somatic Mutations of Hematopoietic Cells Are an Additional Mechanism of Body Aging, Conducive to Comorbidity and Increasing Chronification of Inflammation. Biomedicines, 2022, 10, 782.	3.2	3
4	Lipids and Lipoproteins in Health and Disease. Biomedicines, 2022, 10, 87.	3.2	1
5	Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines, 2022, 10, 1174.	3.2	6
6	Macrophages in Health and Non-Infectious Disease 2.0. Biomedicines, 2022, 10, 1215.	3.2	0
7	Innate immunity to yeast prions: Btn2p and Cur1p curing of the [URE3] prion is prevented by 60S ribosomal protein deficiency or ubiquitin/proteasome system overactivity. Genetics, 2021, 217, .	2.9	6
8	Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology. International Journal of Molecular Sciences, 2021, 22, 4080.	4.1	23
9	Macrophages in Health and Non-Infectious Disease. Biomedicines, 2021, 9, 460.	3.2	4
10	Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 2021, 22, 3923.	4.1	54
11	Proteasome Control of [URE3] Prion Propagation by Degradation of Anti-Prion Proteins Cur1 and Btn2 in <i>Saccharomyces cerevisiae</i> . Genetics, 2021, 218, .	2.9	7
12	Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. International Journal of Molecular Sciences, 2021, 22, 4459.	4.1	30
13	ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 4691.	4.1	10
14	Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from Bench to Bedside. Biomedicines, 2021, 9, 600.	3.2	26
15	Gender Differences in Atherosclerotic Vascular Disease: From Lipids to Clinical Outcomes. Frontiers in Cardiovascular Medicine, 2021, 8, 707889.	2.4	27
16	The Role of Mitochondrial Mutations and Chronic Inflammation in Diabetes. International Journal of Molecular Sciences, 2021, 22, 6733.	4.1	25
17	Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. International Journal of Molecular Sciences, 2021, 22, 6949.	4.1	10
18	Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines, 2021, 9, 915.	3.2	36

#	Article	IF	Citations
19	Immunity in Atherosclerosis: Focusing on T and B Cells. International Journal of Molecular Sciences, 2021, 22, 8379.	4.1	20
20	Gold Nanoparticles: Multifaceted Roles in the Management of Autoimmune Disorders. Biomolecules, 2021, 11, 1289.	4.0	27
21	Inflammasomes and Colorectal Cancer. Cells, 2021, 10, 2172.	4.1	16
22	Harnessing the Therapeutic Potential of Decoys in Non-Atherosclerotic Cardiovascular Diseases: State of the Art. Journal of Cardiovascular Development and Disease, 2021, 8, 103.	1.6	1
23	Mitochondrial Dysfunction in Vascular Wall Cells and Its Role in Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 8990.	4.1	38
24	PCSK9 and cancer: Rethinking the link. Biomedicine and Pharmacotherapy, 2021, 140, 111758.	5 . 6	41
25	Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Frontiers in Cardiovascular Medicine, 2021, 8, 707529.	2.4	86
26	The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomedicine and Pharmacotherapy, 2021, 142, 112041.	5 . 6	33
27	Anti-Prion Systems in Yeast and Inositol Polyphosphates. Biochemistry, 2018, 57, 1285-1292.	2.5	21
28	Real-time imaging of yeast cells reveals several distinct mechanisms of curing of the [URE3] prion. Journal of Biological Chemistry, 2018, 293, 3104-3117.	3.4	13
29	Yeast Prions Compared to Functional Prions and Amyloids. Journal of Molecular Biology, 2018, 430, 3707-3719.	4.2	28
30	Prion propagation and inositol polyphosphates. Current Genetics, 2018, 64, 571-574.	1.7	4
31	[PSI+] prion propagation is controlled by inositol polyphosphates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8402-E8410.	7.1	34
32	Yeast and Fungal Prions. Advances in Genetics, 2016, 93, 191-236.	1.8	25
33	Yeast Prions: Structure, Biology, and Prion-Handling Systems. Microbiology and Molecular Biology Reviews, 2015, 79, 1-17.	6.6	123
34	Yeast Prions: Proteins Templating Conformation and an Anti-prion System. PLoS Pathogens, 2015, 11, e1004584.	4.7	8
35	Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2711-20.	7.1	61
36	Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion, 2013, 7, 175-184.	1.8	21

#	Article	IF	CITATIONS
37	Structure peculiarities of cell walls of Acremonium chrysogenum—an autotroph of cephalosporin C. Applied Biochemistry and Microbiology, 2010, 46, 614-619.	0.9	4
38	Revealing of Saccharomyces cerevisiae yeast cell wall proteins capable of binding thioflavin T, a fluorescent dye specifically interacting with amyloid fibrils. Biochemistry (Moscow), 2009, 74, 1219-1224.	1.5	7
39	The role of high-molecular-weight polyphosphates in activation of glucan transferase Bgl2p from Saccharomyces cerevisiae cell wall. Doklady Biochemistry and Biophysics, 2008, 420, 142-145.	0.9	14
40	Amyloid-like properties of <i>Saccharomyces cerevisiae </i> cell wall glucantransferase Bgl2p. Prion, 2008, 2, 91-96.	1.8	26