
Veeramani Vediyappan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Honeycomb-like Porous Carbon–Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications. ACS Applied Materials & Interfaces, 2015, 7, 15812-15820.	8.0	216
2	Palladium Nanoparticle Incorporated Porous Activated Carbon: Electrochemical Detection of Toxic Metal Ions. ACS Applied Materials & amp; Interfaces, 2016, 8, 1319-1326.	8.0	164
3	Solvent-free mechanochemical synthesis of graphene oxide and Fe ₃ O ₄ –reduced graphene oxide nanocomposites for sensitive detection of nitrite. Journal of Materials Chemistry A, 2015, 3, 15529-15539.	10.3	163
4	Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide. Journal of Materials Chemistry B, 2015, 3, 1360-1370.	5.8	148
5	A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2014, 196, 450-456.	7.8	123
6	Nickel Nanoparticle-Decorated Porous Carbons for Highly Active Catalytic Reduction of Organic Dyes and Sensitive Detection of Hg(II) Ions. ACS Applied Materials & amp; Interfaces, 2015, 7, 24810-24821.	8.0	120
7	Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Scientific Reports, 2014, 4, 4679.	3.3	99
8	Lignocellulosic biomass-derived, graphene sheet-like porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Advances, 2017, 7, 45668-45675.	3.6	95
9	Flower-Like Nickel–Cobalt Oxide Decorated Dopamine-Derived Carbon Nanocomposite for High Performance Supercapacitor Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 5013-5020.	6.7	90
10	Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications. Journal of Materials Chemistry A, 2014, 2, 16015-16022.	10.3	79
11	Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Physical Chemistry Chemical Physics, 2016, 18, 16466-16475.	2.8	78
12	Low-Temperature Chemical Synthesis of CoWO ₄ Nanospheres for Sensitive Nonenzymatic Glucose Sensor. Journal of Physical Chemistry C, 2016, 120, 17024-17028.	3.1	69
13	Biomass-derived functional porous carbons as novel electrode material for the practical detection of biomolecules in human serum and snail hemolymph. Scientific Reports, 2015, 5, 10141.	3.3	66
14	Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors. Scientific Reports, 2016, 6, 24128.	3.3	66
15	Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose. Sensors and Actuators B: Chemical, 2015, 221, 1384-1390.	7.8	60
16	NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors. Electrochimica Acta, 2017, 247, 288-295.	5.2	59
17	Electrochemical synthesis of Au–MnO ₂ on electrophoretically prepared graphene nanocomposite for high performance supercapacitor and biosensor applications. Journal of Materials Chemistry A, 2016, 4, 3304-3315.	10.3	54
18	Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Mikrochimica Acta, 2014, 181, 1843-1850.	5.0	48

VEERAMANI VEDIYAPPAN

#	Article	IF	CITATIONS
19	Functional Porous Carbon/Nickel Oxide Nanocomposites as Binderâ€Free Electrodes for Supercapacitors. Chemistry - A European Journal, 2015, 21, 8200-8206.	3.3	48
20	Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors. Scientific Reports, 2016, 6, 19949.	3.3	45
21	Facile synthesis of MnO ₂ /carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. Journal of Materials Chemistry B, 2015, 3, 6285-6292.	5.8	43
22	In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. Journal of Electroanalytical Chemistry, 2017, 786, 169-176.	3.8	41
23	Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor. Scientific Reports, 2015, 5, 18390.	3.3	40
24	Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 2020, 263, 118259.	20.2	40
25	Fabrication of a novel gold nanospheres/activated carbon nanocomposite for enhanced electrocatalytic activity toward the detection of toxic hydrazine in various water samples. Sensors and Actuators B: Chemical, 2014, 204, 382-387.	7.8	39
26	Cajeput tree bark derived activated carbon for the practical electrochemical detection of vanillin. New Journal of Chemistry, 2015, 39, 9109-9115.	2.8	39
27	CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li-O2 batteries. Chemical Engineering Journal, 2018, 349, 235-240.	12.7	38
28	Porous carbon-NiO nanocomposites for amperometric detection of hydrazine and hydrogen peroxide. Mikrochimica Acta, 2019, 186, 59.	5.0	33
29	Pumpkin stem-derived activated carbons as counter electrodes for dye-sensitized solar cells. RSC Advances, 2014, 4, 63917-63921.	3.6	31
30	Preparation of a reduced graphene oxide/poly- <scp>l</scp> -glutathione nanocomposite for electrochemical detection of 4-aminophenol in orange juice samples. Analytical Methods, 2015, 7, 5627-5634.	2.7	30
31	Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 634-638.	5.3	27
32	A facile electrochemical synthesis strategy for Cu ₂ O (cubes, sheets and flowers) microstructured materials for sensitive detection of 4-nitrophenol. Analytical Methods, 2016, 8, 5906-5910.	2.7	21
33	Low-Temperature Chemical Synthesis of Three-Dimensional Hierarchical Ni(OH) ₂ -Coated Ni Microflowers for High-Performance Enzyme-Free Glucose Sensor. Journal of Physical Chemistry C, 2016, 120, 25752-25759.	3.1	21
34	Highly Efficient Photoelectrochemical Hydrogen Generation Reaction Using Tungsten Phosphosulfide Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 17280-17286.	8.0	19
35	Highly Sensitive Detection of Gallic Acid in Food Samples by Using Robust NiAl ₂ O ₄ Nanocomposite Materials. Journal of the Electrochemical Society, 2019, 166, B29-B34.	2.9	18
36	Quantum dots for light conversion, therapeutic and energy storage applications. Journal of Solid State Chemistry, 2019, 270, 71-84.	2.9	16

VEERAMANI VEDIYAPPAN

#	Article	IF	CITATIONS
37	A facile low-temperature synthesis of V2O5 flakes for electrochemical detection of hydrogen peroxide sensor. Ionics, 2017, 23, 2193-2200.	2.4	15
38	A Facile Synthesis of Cd(OH) ₂ â€rGO Nanocomposites for the Practical Electrochemical Detection of Acetaminophen. Electroanalysis, 2017, 29, 280-286.	2.9	15
39	Nanolayers of carbon protected copper oxide nanocomposite for high performance energy storage and non-enzymatic glucose sensor. Journal of Alloys and Compounds, 2021, 875, 160063.	5.5	15
40	Electrochemical Preparation of a Reduced Graphene Oxide/Ruthenium Oxide Modified Electrode and Its Application to the Simultaneous Determination of Serotonin and Melatonin. Science of Advanced Materials, 2015, 7, 654-662.	0.7	15
41	Vertically-aligned graphene nanowalls grown via plasma-enhanced chemical vapor deposition as a binder-free cathode in Li–O ₂ batteries. Nanotechnology, 2018, 29, 505401.	2.6	8
42	Nitrogen and high oxygen-containing metal-free porous carbon nanosheets for supercapacitor and oxygen reduction reaction applications. Nano Express, 2020, 1, 010036.	2.4	8
43	Oneâ€Step Synthesis of Carbonâ€Protected Co ₃ O ₄ Nanoparticles toward Longâ€Term Water Oxidation in Acidic Media. Advanced Energy and Sustainability Research, 2021, 2, 2100086.	5.8	6
44	Decoration of silver nanoparticles on nitrogen-doped nanoporous carbon derived from zeolitic imidazole framework-8 (ZIF-8) <i>via in situ</i> auto-reduction. RSC Advances, 2021, 11, 6614-6619.	3.6	4
45	Water Transport Analysis in a Polymer Electrolyte Electrolysis Cell Comprised of Gas/Liquid Separating Interdigitated Flow Fields. Electrochemistry, 2022, 90, 017002-017002.	1.4	3
46	lonic conductivity of protonated layered titanate nanoâ€powder compact in water. Nano Select, 2020, 1, 346-352.	3.7	2