
Julio Augusto Freyre-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986704/publications.pdf

Version: 2024-02-01

Julio Augusto

#	Article	IF	CITATIONS
1	Curation, inference, and assessment of a globally reconstructed gene regulatory network for Streptomyces coelicolor. Scientific Reports, 2022, 12, 2840.	3.3	5
2	System Principles Governing the Organization, Architecture, Dynamics, and Evolution of Gene Regulatory Networks. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	5
3	Partition Quantitative Assessment (PQA): A Quantitative Methodology to Assess the Embedded Noise in Clustered Omics and Systems Biology Data. Applied Sciences (Switzerland), 2021, 11, 5999.	2.5	Ο
4	Corynebacterium glutamicum Regulation beyond Transcription: Organizing Principles and Reconstruction of an Extended Regulatory Network Incorporating Regulations Mediated by Small RNA and Protein–Protein Interactions. Microorganisms, 2021, 9, 1395.	3.6	5
5	Abasy Atlas v2.2: The most comprehensive and up-to-date inventory of meta-curated, historical, bacterial regulatory networks, their completeness and system-level characterization. Computational and Structural Biotechnology Journal, 2020, 18, 1228-1237.	4.1	19
6	Evolutionary constraints on the complexity of genetic regulatory networks allow predictions of the total number of genetic interactions. Scientific Reports, 2019, 9, 3618.	3.3	11
7	Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage. Journal of Biotechnology, 2017, 257, 199-210.	3.8	16
8	Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw089.	3.0	19
9	Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells. Biochemistry and Cell Biology, 2015, 93, 376-384.	2.0	24
10	Mathematical modeling of the apo and holo transcriptional regulation in Escherichia coli. Molecular BioSystems, 2015, 11, 994-1003.	2.9	2
11	Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis. BMC Systems Biology, 2013, 7, 127.	3.0	26
12	Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability. Current Genomics, 2013, 14, 378-387.	1.6	25
13	Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach. Journal of Biotechnology, 2012, 161, 278-286.	3.8	19
14	Molecular characterization of chloranilic acid degradation in Pseudomonas putida TQ07. Journal of Microbiology, 2011, 49, 974-980.	2.8	2
15	Identification of network topological units coordinating the global expression response to glucose in Bacillus subtilis and its comparison to Escherichia coli. BMC Microbiology, 2009, 9, 176.	3.3	5
16	Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach. Genome Biology, 2008, 9, R154.	9.6	56
17	Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiology, 2007, 7, 53.	3.3	59
18	Modular analysis of the transcriptional regulatory network of E. coli. Trends in Genetics, 2005, 21, 16-20.	6.7	99