List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.	9.9	85
2	Airâ€Processed Efficient Organic Solar Cells from Aromatic Hydrocarbon Solvent without Solvent Additive or Postâ€Treatment: Insights into Solvent Effect on Morphology. Energy and Environmental Materials, 2022, 5, 977-985.	12.8	59
3	Solution-processable silicon naphthalocyanine tetraimides as near infrared electron acceptors in organic solar cells. Dyes and Pigments, 2022, 197, 109846.	3.7	3
4	Heteroheptacene-based acceptors with thieno[3 <i>,</i> 2- <i>b</i>]pyrrole yield high-performance polymer solar cells. National Science Review, 2022, 9, .	9.5	67
5	Nonfullerene acceptors based on perylene monoimides. Journal of Semiconductors, 2022, 43, 050203.	3.7	4
6	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
7	Recent Progress of Y6â€Đerived Asymmetric Fused Ring Electron Acceptors. Advanced Functional Materials, 2022, 32, .	14.9	114
8	High molecular weight polymeric acceptors based on semi-perfluoroalkylated perylene diimides for pseudo-planar heterojunction all-polymer organic solar cells. Polymer, 2022, 255, 125114.	3.8	5
9	A Pyrroleâ€Fused Asymmetrical Electron Acceptor for Polymer Solar Cells with Approaching 16% Efficiency. Small Structures, 2021, 2, 2000052.	12.0	14
10	Fluorinated End Group Enables Highâ€Performance Allâ€Polymer Solar Cells with Nearâ€Infrared Absorption and Enhanced Device Efficiency over 14%. Advanced Energy Materials, 2021, 11, 2003171.	19.5	89
11	1,2,4-Triazoline-3,5-dione substituted perylene diimides as near infrared acceptors for bulk heterojunction organic solar cells. Dyes and Pigments, 2021, 187, 109108.	3.7	8
12	Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy and Environmental Science, 2021, 14, 3469-3479.	30.8	158
13	Achieving 16.68% efficiency ternary as-cast organic solar cells. Science China Chemistry, 2021, 64, 581-589.	8.2	99
14	Photooxidation Analysis of Two Isomeric Nonfullerene Acceptors: A Systematic Study of Conformational, Morphological, and Environmental Factors. Solar Rrl, 2021, 5, 2000704.	5.8	6
15	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie, 2021, 133, 10225-10234.	2.0	13
16	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	24.0	228
17	Rational Anode Engineering Enables Progresses for Different Types of Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2100492.	19.5	108
18	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	8.2	51

#	Article	IF	CITATIONS
19	Highâ€Efficiency (16.93%) Pseudoâ€Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy. Advanced Functional Materials, 2021, 31, 2102291.	14.9	68
20	Layer-by-Layer Solution-Processed Organic Solar Cells with Perylene Diimides as Acceptors. ACS Applied Materials & Interfaces, 2021, 13, 29876-29884.	8.0	14
21	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 19053-19057.	13.8	43
22	Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials & Interfaces, 2021, 13, 34301-34307.	8.0	20
23	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 19201-19205.	2.0	2
24	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	3.2	2
25	Boosting the Efficiency of Non-fullerene Organic Solar Cells via a Simple Cathode Modification Method. ACS Applied Materials & Interfaces, 2021, 13, 51078-51085.	8.0	19
26	Subnaphthalocyanine triimides: potential three-dimensional solution processable acceptors for organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2186-2195.	5.5	12
27	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	24.0	272
28	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	5.5	47
29	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	5.8	21
30	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	19.5	103
31	An investigation of annealing methods for benzodithiophene terthiophene rhodanine based all small molecule organic solar cells. Organic Electronics, 2020, 87, 105904.	2.6	11
32	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie, 2020, 132, 20007-20012.	2.0	16
33	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19835-19840.	13.8	105
34	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
35	A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive. Journal of Materials Chemistry A, 2020, 8, 17706-17712.	10.3	51
36	Efficient Organic Ternary Solar Cells Employing Narrow Band Gap Diketopyrrolopyrrole Polymers and Nonfullerene Acceptors. Chemistry of Materials, 2020, 32, 7309-7317.	6.7	22

#	Article	IF	CITATIONS
37	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	21.0	282
38	Isomerization Strategy of Nonfullerene Smallâ€Molecule Acceptors for Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2004477.	14.9	58
39	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	11.9	23
40	Concurrent improvement in <i>J</i> _{SC} and <i>V</i> _{OC} in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy and Environmental Science, 2020, 13, 2115-2123.	30.8	164
41	Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 797-805.	3.8	15
42	Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13049-13058.	10.3	41
43	Reducing Energy Loss and Morphology Optimization Manipulated by Molecular Geometry Engineering for Heteroâ€ j unction Organic Solar Cells. Chinese Journal of Chemistry, 2020, 38, 1553-1559.	4.9	19
44	Understanding the Effect of End Group Halogenation in Tuning Miscibility and Morphology of Highâ€Performance Small Molecular Acceptors. Solar Rrl, 2020, 4, 2000250.	5.8	63
45	Improved organic solar cell efficiency based on the regulation of an alkyl chain on chlorinated non-fullerene acceptors. Materials Chemistry Frontiers, 2020, 4, 2428-2434.	5.9	27
46	Twoâ€Ðimension Conjugated Acceptors Based on Benzodi(cyclopentadithiophene) Core with Thiopheneâ€Fused Ending Group for Efficient Polymer Solar Cells. Solar Rrl, 2020, 4, 2000071.	5.8	12
47	Fluorinated pyrazine-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 7083-7089.	10.3	17
48	Over 15% Efficiency Polymer Solar Cells Enabled by Conformation Tuning of Newly Designed Asymmetric Smallâ€Molecule Acceptors. Advanced Functional Materials, 2020, 30, 2000383.	14.9	55
49	Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nature Communications, 2020, 11, 1218.	12.8	197
50	Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 5927-5935.	10.3	39
51	Conformationâ€Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. Small, 2020, 16, e2001942.	10.0	49
52	Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. ACS Applied Materials & Interfaces, 2020, 12, 13068-13076.	8.0	21
53	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	8.2	292
54	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Science China Chemistry, 2020, 63, 361-369.	8.2	128

#	Article	IF	CITATIONS
55	Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Advanced Functional Materials, 2020, 30, 2000456.	14.9	164
56	Organic-inorganic hybrid heterostructures towards long-wavelength photodetectors based on InGaZnO-Polymer. Organic Electronics, 2020, 83, 105778.	2.6	16
57	Achieving Ecoâ€Compatible Organic Solar Cells with Efficiency >16.5% Based on an Iridium Complexâ€Incorporated Polymer Donor. Solar Rrl, 2020, 4, 2000156.	5.8	43
58	10.13% Efficiency Allâ€Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors. Solar Rrl, 2020, 4, 2000142.	5.8	45
59	"Double-Acceptor-Type―Random Conjugated Terpolymer Donors for Additive-Free Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 20741-20749.	8.0	15
60	High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno[2,3-f] benzofuran unit. Science China Chemistry, 2020, 63, 1246-1255.	8.2	55
61	Guest-oriented non-fullerene acceptors for ternary organic solar cells with over 16.0% and 22.7% efficiencies under one-sun and indoor light. Nano Energy, 2020, 75, 104896.	16.0	72
62	Thioether Bond Modification Enables Boosted Photovoltaic Performance of Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 32218-32224.	8.0	16
63	Sulfur-annulated perylenediimide as an interfacial material enabling inverted perovskite solar cells with over 20% efficiency and high fill factors exceeding 83%. Journal of Materials Chemistry A, 2019, 7, 21176-21181.	10.3	15
64	Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: Insight into the isomerization. Nano Energy, 2019, 66, 104146.	16.0	47
65	Seleno twisted benzodiperylenediimides: facile synthesis and excellent electron acceptors for additive-free organic solar cells. Chemical Communications, 2019, 55, 703-706.	4.1	12
66	lsomerization of Perylene Diimide Based Acceptors Enabling Highâ€Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Advanced Science, 2019, 6, 1802065.	11.2	69
67	Morphological optimization by rational matching of the donor and acceptor boosts the efficiency of alkylsilyl fused ring-based polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4847-4854.	10.3	10
68	Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification. Chemistry of Materials, 2019, 31, 1752-1760.	6.7	48
69	A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy and Environmental Science, 2019, 12, 384-395.	30.8	193
70	Fusedâ€Ring Core Engineering for Small Molecule Acceptors Enable Highâ€Performance Nonfullerene Polymer Solar Cells. Small Methods, 2019, 3, 1900280.	8.6	17
71	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	30.8	213
72	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	2.0	14

#	Article	IF	CITATIONS
73	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	13.8	73
74	Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chinese Chemical Letters, 2019, 30, 1161-1167.	9.0	19
75	Subphthalocyanine Triimides: Solution Processable Bowl-Shaped Acceptors for Bulk Heterojunction Solar Cells. Organic Letters, 2019, 21, 3382-3386.	4.6	38
76	Fluorene-fused ladder-type non-fullerene small molecule acceptors for high-performance polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 709-715.	5.9	11
77	Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy Materials, 2019, 9, 1900041.	19.5	144
78	A Simple Approach to Prepare Chlorinated Polymer Donors with Low-Lying HOMO Level for High Performance Polymer Solar Cells. Chemistry of Materials, 2019, 31, 6558-6567.	6.7	50
79	Regulating exciton bonding energy and bulk heterojunction morphology in organic solar cells <i>via</i> methyl-functionalized non-fullerene acceptors. Journal of Materials Chemistry A, 2019, 7, 6809-6817.	10.3	26
80	Introducing an identical benzodithiophene donor unit for polymer donors and small-molecule acceptors to unveil the relationship between the molecular structure and photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 26351-26357.	10.3	18
81	Non-halogenated-solvent-processed highly efficient organic solar cells with a record open circuit voltage enabled by noncovalently locked novel polymer donors. Journal of Materials Chemistry A, 2019, 7, 27394-27402.	10.3	20
82	Functionalizing tetraphenylpyrazine with perylene diimides (PDIs) as high-performance nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 14563-14570.	5.5	9
83	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	10.3	107
84	Single-strand and ladder-type polymeric acceptors based on regioisomerically-pure perylene diimides towards all-polymer solar cells. Polymer, 2019, 162, 108-115.	3.8	13
85	Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS Nano, 2018, 12, 4440-4452.	14.6	77
86	High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption. Journal of Materials Chemistry A, 2018, 6, 9613-9622.	10.3	25
87	9,9′â€Bifluorenylideneâ€Core Perylene Diimide Acceptors for Asâ€Cast Nonâ€Fullerene Organic Solar Cells: Th Isomeric Effect on Optoelectronic Properties. Chemistry - A European Journal, 2018, 24, 4149-4156.	e _{3.3}	31
88	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	21.0	253
89	A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a <i>V</i> _{OC} over 1.0 V. Journal of Materials Chemistry C, 2018, 6, 1136-1142.	5.5	41
90	A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 6874-6881.	10.3	37

#	Article	IF	CITATIONS
91	Conjugated polymers based on 1,8â€naphthalene monoimide with high electron mobility. Journal of Polymer Science Part A, 2018, 56, 276-281.	2.3	9
92	Semiâ€perfluoroalkylated perylene diimides for conjugated polymers with high molecular weight and high electron mobility. Journal of Polymer Science Part A, 2018, 56, 116-124.	2.3	12
93	Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells. Journal of Materials Chemistry C, 2018, 6, 11111-11117.	5.5	16
94	Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy and Environmental Science, 2018, 11, 3275-3282.	30.8	261
95	Asymmetrical Ladderâ€Type Donorâ€Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Materials, 2018, 30, e1800052.	21.0	252
96	<i>De novo</i> design of small molecule acceptors <i>via</i> fullerene/non-fullerene hybrids for polymer solar cells. Chemical Communications, 2018, 54, 9801-9804.	4.1	13
97	Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chemical Science, 2018, 9, 8142-8149.	7.4	67
98	Nearâ€Infrared Small Molecule Acceptor Enabled Highâ€Performance Nonfullerene Polymer Solar Cells with Over 13% Efficiency. Advanced Functional Materials, 2018, 28, 1803128.	14.9	78
99	Side hain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm. Advanced Energy Materials, 2018, 8, 1800856.	19.5	118
100	Nonfullerene Polymer Solar Cells based on a Perylene Monoimide Acceptor with a High Openâ€Circuit Voltage of 1.3 V. Advanced Functional Materials, 2017, 27, 1603892.	14.9	67
101	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	5.8	198
102	Facile Approach to Perylenemonoimide with Short Side Chains for Nonfullerene Solar Cells. Journal of Organic Chemistry, 2017, 82, 5926-5931.	3.2	19
103	Effect of substituents of twisted benzodiperylenediimides on non-fullerene solar cells. Organic Electronics, 2017, 47, 72-78.	2.6	9
104	Perylene diimide-benzodithiophene D-A copolymers as acceptor in all-polymer solar cells. Organic Electronics, 2017, 41, 49-55.	2.6	25
105	Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 34146-34152.	8.0	42
106	Side Group Engineering of Small Molecular Acceptors for Highâ€Performance Fullereneâ€Free Polymer Solar Cells: Thiophene Being Superior to Selenophene. Advanced Functional Materials, 2017, 27, 1702194.	14.9	88
107	A facile <i>in situ</i> approach to ion gel based polymer electrolytes for flexible lithium batteries. RSC Advances, 2017, 7, 54391-54398.	3.6	23
108	Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency. Materials Chemistry Frontiers, 2017, 1, 749-756.	5.9	44

#	Article	IF	CITATIONS
109	Boosting reverse intersystem crossing by increasing donors in triarylboron/phenoxazine hybrids: TADF emitters for high-performance solution-processed OLEDs. Journal of Materials Chemistry C, 2016, 4, 4402-4407.	5.5	136
110	Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material. Journal of Materials Chemistry A, 2016, 4, 14752-14760.	10.3	91
111	A New Polythiophene Derivative for High Efficiency Polymer Solar Cells with PCE over 9%. Advanced Energy Materials, 2016, 6, 1600430.	19.5	84
112	Synthesis and photovoltaic properties of an n-type two-dimension-conjugated polymer based on perylene diimide and benzodithiophene with thiophene conjugated side chains. Journal of Materials Chemistry A, 2015, 3, 18442-18449.	10.3	73
113	Fluorene-centered perylene monoimides as potential non-fullerene acceptor in organic solar cells. Organic Electronics, 2015, 21, 184-191.	2.6	39
114	Star-shaped carbazole-based BODIPY derivatives with improved hole transportation and near-infrared absorption for small-molecule organic solar cells with high open-circuit voltages. RSC Advances, 2015, 5, 32283-32289.	3.6	30
115	A Soluble Ladderâ€Conjugated Starâ€Shaped Oligomer Composed of Four Perylene Diimide Branches and a Fluorene Core: Synthesis and Properties. Chemistry - A European Journal, 2014, 20, 10170-10178.	3.3	30
116	Liquid Crystalline Perylene Diimide Outperforming Nonliquid Crystalline Counterpart: Higher Power Conversion Efficiencies (PCEs) in Bulk Heterojunction (BHJ) Cells and Higher Electron Mobility in Space Charge Limited Current (SCLC) Devices. ACS Applied Materials & Interfaces, 2013, 5, 11093-11100.	8.0	26
117	Fusion of perylene bisimides and hexaazatriphenylene into a star-shaped ladder conjugated n-type semiconductor. RSC Advances, 2013, 3, 21373.	3.6	9
118	Regioselective Photocyclization To Prepare Multifunctional Blocks for Ladder-Conjugated Materials. Journal of Organic Chemistry, 2013, 78, 5544-5549.	3.2	16
119	N-type organic semiconductor bisazacoronene diimides efficiently synthesized by a new type of photocyclization involving a Schiff base. RSC Advances, 2012, 2, 12644.	3.6	23
120	Fusing three perylenebisimide branches and a truxene core into a star-shaped chromophore with strong two-photon excited fluorescence and high photostability. Chemical Communications, 2012, 48, 4338.	4.1	52
121	Fused perylenebisimide–carbazole: new ladder chromophores with enhanced third-order nonlinear optical activities. Chemical Communications, 2011, 47, 10749.	4.1	42