Kouichi Kuroda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9866111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering of microorganisms towards recovery of rare metal ions. Applied Microbiology and Biotechnology, 2010, 87, 53-60.	3.6	99
2	Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. Journal of Bioscience and Bioengineering, 2008, 105, 622-627.	2.2	88
3	Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Applied Microbiology and Biotechnology, 2001, 57, 697-701.	3.6	87
4	Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Applied Microbiology and Biotechnology, 2008, 79, 51-60.	3.6	87
5	Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. Journal of Biochemistry, 2011, 150, 431-438.	1.7	75
6	Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Applied Microbiology and Biotechnology, 2006, 70, 458-463.	3.6	68
7	Genome Sequence of the Cellulosome-Producing Mesophilic Organism <i>Clostridium cellulovorans</i>	2.2	68
8	Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Applied Microbiology and Biotechnology, 2009, 82, 713-719.	3.6	67
9	Comparative genomics of the mesophilic cellulosomeâ€producing <i>Clostridium cellulovorans</i> and its application to biofuel production via consolidated bioprocessing. Environmental Technology (United Kingdom), 2010, 31, 889-903.	2.2	67
10	Cell surface engineering of yeast for applications in white biotechnology. Biotechnology Letters, 2011, 33, 1-9.	2.2	64
11	Molecular design of the microbial cell surface toward the recovery of metal ions. Current Opinion in Biotechnology, 2011, 22, 427-433.	6.6	63
12	Next generation of antimicrobial peptides as molecular targeted medicines. Journal of Bioscience and Bioengineering, 2012, 114, 365-370.	2.2	63
13	Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Applied Microbiology and Biotechnology, 2003, 63, 182-186.	3.6	61
14	Surface Display of Organophosphorus Hydrolase on Saccharomyces cerevisiae. Biotechnology Progress, 2006, 22, 939-943.	2.6	61
15	Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Applied Microbiology and Biotechnology, 2010, 86, 641-648.	3.6	60
16	Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Applied Microbiology and Biotechnology, 2002, 59, 259-264.	3.6	58
17	Comparison of the mesophilic cellulosomeâ€producing <i>Clostridium cellulovorans</i> genome with other cellulosomeâ€related clostridial genomes. Microbial Biotechnology, 2011, 4, 64-73.	4.2	56
18	Precise genome-wide base editing by the CRISPR Nickase system in yeast. Scientific Reports, 2017, 7, 2095.	3.3	56

#	Article	IF	CITATIONS
19	Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae Cell Surface. Applied and Environmental Microbiology, 2015, 81, 59-66.	3.1	52
20	Arming Technology in Yeast—Novel Strategy for Whole-cell Biocatalyst and Protein Engineering. Biomolecules, 2013, 3, 632-650.	4.0	50
21	Regulation of the Display Ratio of Enzymes on the Saccharomyces cerevisiae Cell Surface by the Immunoglobulin G and Cellulosomal Enzyme Binding Domains. Applied and Environmental Microbiology, 2009, 75, 4149-4154.	3.1	48
22	Application of the Arming System for the Expression of the 380R Antigen from Red Sea Bream Iridovirus (RSIV) on the Surface of Yeast Cells: A First Step for the Development of an Oral Vaccine. Biotechnology Progress, 2006, 22, 949-953.	2.6	43
23	Tracing Putative Trafficking of the Glycolytic Enzyme Enolase via SNARE-Driven Unconventional Secretion. Eukaryotic Cell, 2012, 11, 1075-1082.	3.4	41
24	Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express, 2012, 2, 37.	3.0	39
25	Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Applied Microbiology and Biotechnology, 2012, 94, 939-948.	3.6	39
26	Discovery of a Modified Transcription Factor Endowing Yeasts with Organic-Solvent Tolerance and Reconstruction of an Organic-Solvent-Tolerant <i>Saccharomyces cerevisiae</i> Strain. Applied and Environmental Microbiology, 2008, 74, 4222-4225.	3.1	38
27	Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation. BMC Microbiology, 2013, 13, 180.	3.3	38
28	Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts. Applied Microbiology and Biotechnology, 2009, 83, 859-864.	3.6	37
29	Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Applied Microbiology and Biotechnology, 2016, 100, 1723-1732.	3.6	37
30	Spatial Reorganization of Saccharomyces cerevisiae Enolase To Alter Carbon Metabolism under Hypoxia. Eukaryotic Cell, 2013, 12, 1106-1119.	3.4	36
31	ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. Journal of Biotechnology, 2013, 165, 145-152.	3.8	34
32	Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Scientific Reports, 2016, 6, 23157.	3.3	33
33	Display of <i>Clostridium cellulovorans</i> xylose isomerase on the cell surface of <i>Saccharomyces cerevisiae</i> and its direct application to xylose fermentation. Biotechnology Progress, 2013, 29, 346-351.	2.6	31
34	Molecular Breeding of Advanced Microorganisms for Biofuel Production. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	30
35	Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae. Current Genetics, 2014, 60, 149-162.	1.7	30
36	Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. Journal of Biotechnology, 2016, 231, 129-135.	3.8	30

#	Article	IF	CITATIONS
37	Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Applied Microbiology and Biotechnology, 2017, 101, 6627-6636.	3.6	29
38	Screening for candidate genes involved in tolerance to organic solvents in yeast. Applied Microbiology and Biotechnology, 2006, 71, 75-79.	3.6	28
39	Systems for the detection and analysis of protein–protein interactions. Applied Microbiology and Biotechnology, 2006, 71, 127-136.	3.6	28
40	Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Systems, 2019, 9, 534-547.e5.	6.2	28
41	Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Applied Microbiology and Biotechnology, 2009, 82, 105-113.	3.6	26
42	Candida albicans Possesses Sap7 as a Pepstatin A-Insensitive Secreted Aspartic Protease. PLoS ONE, 2012, 7, e32513.	2.5	26
43	Exoproteome Profiles of Clostridium cellulovorans Grown on Various Carbon Sources. Applied and Environmental Microbiology, 2013, 79, 6576-6584.	3.1	26
44	Time-course proteomic profile of <i>Candida albicans</i> during adaptation to a fetal serum. Pathogens and Disease, 2013, 67, 67-75.	2.0	26
45	Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system. Biotechnology Letters, 2010, 32, 655-659.	2.2	25
46	Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of SED1. Journal of Bioscience and Bioengineering, 2010, 109, 442-446.	2.2	25
47	Cellular and molecular engineering of yeastSaccharomyces cerevisiaefor advanced biobutanol production. FEMS Microbiology Letters, 2016, 363, fnv247.	1.8	25
48	Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells. Applied Microbiology and Biotechnology, 2010, 86, 1895-1902.	3.6	24
49	Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Applied Microbiology and Biotechnology, 2012, 96, 153-159.	3.6	24
50	Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2. Applied Microbiology and Biotechnology, 2013, 97, 4013-4020.	3.6	24
51	Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express, 2015, 5, 29.	3.0	24
52	Enhanced butanol production by eukaryotic <i>Saccharomyces cerevisiae</i> engineered to contain an improved pathway. Bioscience, Biotechnology and Biochemistry, 2015, 79, 314-320.	1.3	24
53	Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation. AMB Express, 2015, 5, 2.	3.0	22
54	Description of the interaction between Candida albicans and macrophages by mixed and quantitative proteome analysis without isolation. AMB Express, 2015, 5, 127.	3.0	22

#	Article	IF	CITATIONS
55	Acquisition of thermotolerant yeast <i>Saccharomyces cerevisiae</i> by breeding via stepwise adaptation. Biotechnology Progress, 2013, 29, 1116-1123.	2.6	21
56	Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization. PLoS ONE, 2016, 11, e0155537.	2.5	21
57	Efficient and Direct Fermentation of Starch to Ethanol by Sake Yeast Strains Displaying Fungal Glucoamylases. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1376-1379.	1.3	20
58	Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of <i>Candida albicans</i> . FEMS Immunology and Medical Microbiology, 2012, 65, 121-124.	2.7	20
59	Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation. Journal of Proteomics, 2015, 125, 112-120.	2.4	20
60	Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast. Current Genetics, 2015, 61, 153-164.	1.7	20
61	Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1459-1462.	1.3	20
62	An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface. Applied Microbiology and Biotechnology, 2002, 59, 329-331.	3.6	19
63	Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Applied Microbiology and Biotechnology, 2013, 97, 4003-4011.	3.6	19
64	Cellulosome Complexes: Natural Biocatalysts as Arming Microcompartments of Enzymes. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 370-378.	1.0	19
65	Membrane-displayed peptide ligand activates the pheromone response pathway in Saccharomyces cerevisiae. Journal of Biochemistry, 2012, 151, 551-557.	1.7	18
66	Elucidation of potentially virulent factors of Candida albicans during serum adaptation by using quantitative time-course proteomics. Journal of Proteomics, 2013, 91, 417-429.	2.4	18
67	Putative Alginate Assimilation Process of the Marine Bacterium Saccharophagus degradans 2-40 Based on Quantitative Proteomic Analysis. Marine Biotechnology, 2016, 18, 15-23.	2.4	18
68	Detection of protein–protein interactions by a combination of a novel cytoplasmic membrane targeting system of recombinant proteins and fluorescence resonance energy transfer. Applied Microbiology and Biotechnology, 2006, 70, 451-457.	3.6	17
69	Development of surfaceâ€engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyreneâ€excimer fluorescence. Biotechnology Progress, 2013, 29, 1197-1202.	2.6	17
70	Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Applied Microbiology and Biotechnology, 2008, 77, 1225-1232.	3.6	16
71	Recovery of platinum(0) through the reduction of platinum ions by hydrogenase-displaying yeast. AMB Express, 2016, 6, 88.	3.0	16
72	High-throughput screening of improved protease inhibitors using a yeast cell surface display system and a yeast cell chip. Journal of Bioscience and Bioengineering, 2011, 111, 16-18.	2.2	15

#	Article	IF	CITATIONS
73	Direct fermentation of newspaper after laccase-treatment using yeast codisplaying endoglucanase, cellobiohydrolase, and β-glucosidase. Renewable Energy, 2012, 44, 199-205.	8.9	15
74	Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library. Applied Microbiology and Biotechnology, 2009, 85, 95-104.	3.6	14
75	Putative Role of Cellulosomal Protease Inhibitors in Clostridium cellulovorans Based on Gene Expression and Measurement of Activities. Journal of Bacteriology, 2011, 193, 5527-5530.	2.2	14
76	Enhanced Adsorption and Recovery of Uranyl Ions by NikR Mutant-Displaying Yeast. Biomolecules, 2014, 4, 390-401.	4.0	14
77	Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-arming Technology. Methods in Molecular Biology, 2014, 1152, 137-155.	0.9	14
78	Membrane-displayed somatostatin activates somatostatin receptor subtype-2 heterologously produced in Saccharomyces cerevisiae. AMB Express, 2012, 2, 63.	3.0	13
79	Estimation of Enzyme Kinetic Parameters of Cell Surface-displayed Organophosphorus Hydrolase and Construction of a Biosensing System for Organophosphorus Compounds. Analytical Sciences, 2011, 27, 823-826.	1.6	12
80	Enhanced direct ethanol production by cofactor optimization of cell surfaceâ€displayed xylose isomerase in yeast. Biotechnology Progress, 2017, 33, 1068-1076.	2.6	12
81	Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2017, 124, 599-605.	2.2	11
82	Surface coat proteins of the pine wood nematode, Bursaphelenchus xylophilus: profiles of stage- and isolate-specific characters. Nematology, 2009, 11, 429-438.	0.6	10
83	Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP. Biotechnology Journal, 2010, 5, 515-519.	3.5	10
84	Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering. AMB Express, 2012, 2, 56.	3.0	10
85	Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory. PLoS ONE, 2015, 10, e0124545.	2.5	10
86	Construction of engineered yeast producing ammonia from glutamine and soybean residues (okara). AMB Express, 2020, 10, 70.	3.0	10
87	Efficient ammonia production from food by-products by engineered Escherichia coli. AMB Express, 2020, 10, 150.	3.0	10
88	Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides. BMC Microbiology, 2019, 19, 118.	3.3	9
89	Mutated Intramolecular Chaperones Generate High-Activity Isomers of Mature Enzymes. Biochemistry, 2012, 51, 3547-3553.	2.5	8
90	Singleâ€cell heterogeneity in suppression of PC12 differentiation by direct microinjection of a differentiation inhibitor, U0126. Cell Biology International, 2014, 38, 1215-1220.	3.0	8

#	Article	IF	CITATIONS
91	Platform construction of molecular breeding for utilization of brown macroalgae. Journal of Bioscience and Bioengineering, 2018, 125, 1-7.	2.2	8
92	Construction of a convenient system for easily screening inhibitors of mutated influenza virus neuraminidases. FEBS Open Bio, 2013, 3, 484-489.	2.3	7
93	Fixation of CO2 in Clostridium cellulovorans analyzed by 13C-isotopomer-based target metabolomics. AMB Express, 2013, 3, 61.	3.0	7
94	A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli. Scientific Reports, 2022, 12, 4182.	3.3	7
95	ROS Production and Apoptosis Induction by Formation of Gts1p-Mediated Protein Aggregates. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1546-1553.	1.3	6
96	Chimeric Yeast G-Protein α Subunit Harboring a 37-Residue C-Terminal Gustducin-Specific Sequence Is Functional in <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2012, 76, 512-516.	1.3	6
97	Design of a Novel Antimicrobial Peptide Activated by Virulent Proteases. Chemical Biology and Drug Design, 2012, 80, 725-733.	3.2	6
98	Draft Genome Sequence of <i>Falsirhodobacter</i> sp. Strain alg1, an Alginate-Degrading Bacterium Isolated from Fermented Brown Algae. Genome Announcements, 2014, 2, .	0.8	6
99	Smallâ€scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in <i>Saccharomyces cerevisiae</i> . Cell Biology International, 2021, 45, 1776-1783.	3.0	6
100	Development of a mito-CRISPR system for generating mitochondrial DNA-deleted strain in <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2021, 85, 895-901.	1.3	6
101	Purification of Inactive Precursor of Carboxypeptidase Y Using Selective Cleavage Method Coupled with Molecular Display. Bioscience, Biotechnology and Biochemistry, 2009, 73, 753-755.	1.3	5
102	Inhibition of Heat Tolerance and Nuclear Import of Gts1p by Ssa1p and Ssa2p. Bioscience, Biotechnology and Biochemistry, 2011, 75, 323-330.	1.3	5
103	Evaluation of chitosan-binding amino acid residues of chitosanase from <i>Paenibacillus fukuinensis</i> . Bioscience, Biotechnology and Biochemistry, 2014, 78, 1177-1182.	1.3	5
104	Genome Sequence of Formosa haliotis Strain MA1, a Brown Alga-Degrading Bacterium Isolated from the Gut of Abalone <i>Haliotis gigantea</i> . Genome Announcements, 2016, 4, .	0.8	5
105	Environmental Stress Tolerance Engineering by Modification of Cell Surface and Transcription Factor in Saccharomyces cerevisiae. Current Environmental Engineering, 2015, 1, 149-156.	0.6	5
106	Cell-surface modification of non-GMO without chemical treatment by novel GMO-coupled and -separated cocultivation method. Applied Microbiology and Biotechnology, 2009, 82, 293-301.	3.6	4
107	GTS1Induction Causes Derepression of Tup1-Cyc8-Repressing Genes and Chromatin Remodeling through the Interaction of Gts1p with Cyc8p. Bioscience, Biotechnology and Biochemistry, 2011, 75, 740-747.	1.3	4
108	Detection of Candida albicans by using a designed fluorescence-quenched peptide. Journal of Bioscience and Bioengineering, 2013, 116, 573-575.	2.2	4

#	Article	IF	CITATIONS
109	Screening of randomly mutagenized glucagon-like peptide-1 library by using an integrated yeast-mammalian assay system. Journal of Biotechnology, 2015, 209, 96-101.	3.8	4
110	Characteristic strategy of assimilation of various saccharides by Clostridium cellulovorans. AMB Express, 2016, 6, 64.	3.0	4
111	Rapid preparation of mutated influenza hemagglutinins for influenza virus pandemic prevention. AMB Express, 2016, 6, 8.	3.0	4
112	Construction of recombinant <i>Escherichia coli</i> producing nitrogenase-related proteins from <i>Azotobacter vinelandii</i> . Bioscience, Biotechnology and Biochemistry, 2021, 85, 2209-2216.	1.3	4
113	Simultaneous Display of Multiple Kinds of Enzymes on the Yeast Cell Surface for Multistep Reactions. Methods in Molecular Biology, 2022, 2491, 627-641.	0.9	4
114	Identification of Interaction Site of Propeptide toward Mature Carboxypeptidase Y (mCPY) Based on the Similarity between Propeptide and CPY Inhibitor (I ^C). Bioscience, Biotechnology and Biochemistry, 2012, 76, 153-156.	1.3	3
115	Functional screening system for yeast-secreted peptides acting on G-protein coupled receptors. AMB Express, 2015, 5, 26.	3.0	3
116	Characterization of the cellulosomal scaffolding protein CbpC from Clostridium cellulovorans 743B. Journal of Bioscience and Bioengineering, 2017, 124, 376-380.	2.2	3
117	Development of an Analysis Method for 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid by LC/ESI/MS with Selected Ion Monitoring. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	3
118	CRISPR Nickase-Mediated Base Editing in Yeast. Methods in Molecular Biology, 2021, 2196, 27-37.	0.9	3
119	Growth acceleration of plants and mushroom by erythritol. Plant Biotechnology, 2008, 25, 489-492.	1.0	2
120	A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry, 2014, 78, 358-362.	1.3	2
121	Adaptive Evolution of Yeast Under Heat Stress and Genetic Reconstruction to Generate Thermotolerant Yeast. , 2018, , 23-36.		2
122	Xylanase B fromClostridium cellulovorans743B: overexpression, purification, crystallization and X-ray diffraction analysis. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 113-116.	0.8	2
123	Enzyme Evolution by Yeast Cell Surface Engineering. Methods in Molecular Biology, 2015, 1319, 217-232.	0.9	2
124	Platform of direct ethanol production from macroalgae by engineered Saccharomyces cerevisiae. New Biotechnology, 2016, 33, S51.	4.4	1
125	Energy Production: Biomass – Starch, Cellulose, and Hemicellulose. , 2019, , 17-28.		1
126	Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-Arming Technology. Methods in Molecular Biology, 2022, , 59-77.	0.9	1

#	Article	IF	CITATIONS
127	Proposed alginate utilization process of the macroalgae-assimilating Saccharophagus degradans 2-40 based on quantitative proteomic analysis. New Biotechnology, 2016, 33, S85-S86.	4.4	0
128	Ethanol production from hemicellulose using xylose isomerase-displaying yeast. New Biotechnology, 2016, 33, S85.	4.4	0
129	Preparation of Functional Cells: Improvement of Stress Tolerance. , 2019, , 85-92.		0
130	Cleanup of Pollution: Heavy Metal Ions and Environmental Hormones. , 2019, , 63-72.		0
131	Candida albicans exhibits a pepstatin Aâ€insensitive secreted aspartic protease as a virulence factor. FASEB Journal, 2012, 26, 557.1.	0.5	0
132	Interesting effects including apoptosis induced by protein aggregation of Gts1p with polyQâ€ŧail in yeast. FASEB Journal, 2012, 26, .	0.5	0
133	Construction of a novel system for developing inhibitors of influenza virus neuraminidase by yeast cell surface engineering. FASEB Journal, 2013, 27, 894.4.	0.5	0
134	Modification of sterol composition in yeast cell membrane from ergosterol to cholesterol and its effect on Ste2 signaling. FASEB Journal, 2013, 27, 1096.8.	0.5	0
135	Modification of enzymes by protein folding memory. FASEB Journal, 2013, 27, 784.1.	0.5	0
136	Effects of recognition sequence variations on transcription regulation of multidrug resistance regulator Pdr1p in yeast. FASEB Journal, 2013, 27, 980.6.	0.5	0
137	Mixed proteome analysis for clarification of the mechanism of infectious candidiasis (152.6). FASEB Journal, 2014, 28, 152.6.	0.5	0

138 Cas9ãf<ãffã,«ãf¼ã,¼ã,¼ã,,ç""ã,ã¥ã,ªãf•ã,¿ãf¼ã,²ãffãfˆã®ãªã,æ−°ã⊷ã,ã,²ãfŽãfç∵é>†æ³•ï¼^CRISPR Nickaseã,∙ã,¹ðſфãf)ã®é−<ç™

Recovery of Rare Metal Ions. , 2019, , 73-83.