Chung-Yuan Mou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986330/publications.pdf Version: 2024-02-01

		6254	8630
312	24,210	80	146
papers	citations	h-index	g-index
321	321	321	26569
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Bismuth Species-Decorated ZnO/p-Si Photocathode for High Selectivity of Formate in CO ₂ Photoelectrochemical Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 2380-2387.	6.7	10
2	Interconnected Microporous and Mesoporous Carbon Derived from Pitch for Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4462-4472.	6.7	5
3	Construction of Heterostructured Sn/TiO ₂ /Si Photocathode for Efficient Photoelectrochemical CO ₂ Reduction. ChemSusChem, 2022, 15, .	6.8	11
4	Diatom-inspired self-assembly for silica thin sheets of perpendicular nanochannels. Journal of Colloid and Interface Science, 2021, 584, 647-659.	9.4	5
5	Zn2+-Depletion Enhances Lysosome Fission in Cultured Rat Embryonic Cortical Neurons Revealed by a Modified Epifluorescence Microscopic Technique. Microscopy and Microanalysis, 2021, 27, 420-424.	0.4	0
6	Highly Selective Conversion of Glycerol to Formic Acid over a Synergistic Au/Phosphotungstic Acid Catalyst under Nanoconfinement. ACS Sustainable Chemistry and Engineering, 2021, 9, 3571-3579.	6.7	18
7	Selective growths of <scp>singleâ€walled</scp> carbon nanotubes from mesoporous supports via <scp>CO</scp> disproportionation. Journal of the Chinese Chemical Society, 2021, 68, 491-499.	1.4	4
8	Regulated Li Electrodeposition Behavior through Mesoporous Silica Thin Film in Anode-Free Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 5132-5142.	5.1	20
9	Realizing ultrathin silica membranes with straight-through channels for high-performance organic solvent nanofiltration (OSN). Journal of Membrane Science, 2021, 627, 119224.	8.2	8
10	An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics, 2021, 13, 1067.	4.5	57
11	Evaluation of Nanoparticle Penetration in the Tumor Spheroid Using Two-Photon Microscopy. Biomedicines, 2021, 9, 10.	3.2	15
12	Mesoporous silica thin films incorporated chitosan mixed matrix nanofiltration membranes for textile wastewater treatment. Journal of the Chinese Chemical Society, 2021, 68, 451-461.	1.4	6
13	Revealing the Phagosomal pH Regulation and Inflammation of Macrophages after Endocytosing Polyurethane Nanoparticles by A Ratiometric pH Nanosensor. Advanced Biology, 2021, 5, 2000200.	2.5	7
14	Mesoporous silica-supported V-substituted heteropoly acid for efficient selective conversion of glycerol to formic acid. Journal of Saudi Chemical Society, 2020, 24, 1-8.	5.2	10
15	The oversolubility of methane gas in nano-confined water in nanoporous silica materials. Microporous and Mesoporous Materials, 2020, 293, 109793.	4.4	15
16	Selective oxidation of light alkanes under mild conditions. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 39-46.	5.9	11
17	Active site-directed tandem catalysis on CuO/VO-MnO2 for efficient and stable catalytic ozonation of S-VOCs under mild condition. Nano Today, 2020, 35, 100944.	11.9	69
18	Simultaneous Single-Particle Tracking and Dynamic pH Sensing Reveal Lysosome-Targetable Mesoporous Silica Nanoparticle Pathways. ACS Applied Materials & Interfaces, 2020, 12, 42472-42484.	8.0	16

#	Article	IF	CITATIONS
19	Fluid Behavior in Nanoporous Silica. Frontiers in Chemistry, 2020, 8, 734.	3.6	6
20	STING Activator c-di-GMP-Loaded Mesoporous Silica Nanoparticles Enhance Immunotherapy Against Breast Cancer. ACS Applied Materials & Interfaces, 2020, 12, 56741-56752.	8.0	45
21	Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes. Journal of Materials Chemistry A, 2020, 8, 5095-5104.	10.3	47
22	Mesoporous Silica Thin Membrane with Tunable Pore Size for Ultrahigh Permeation and Precise Molecular Separation. ACS Applied Materials & Interfaces, 2020, 12, 7459-7465.	8.0	21
23	Catcher in the rel: Nanoparticles-antibody conjugate as NF-ΰB nuclear translocation blocker. Biomaterials, 2020, 246, 119997.	11.4	18
24	Sleeping Beauty Transposon-Mediated Asparaginase Gene Delivery by a Nanoparticle Platform. Scientific Reports, 2019, 9, 11457.	3.3	8
25	Dual Delivery of HNF4α and Cisplatin by Mesoporous Silica Nanoparticles Inhibits Cancer Pluripotency and Tumorigenicity in Hepatoma-Derived CD133-Expressing Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 19808-19818.	8.0	40
26	Codelivery of Plasmid and Curcumin with Mesoporous Silica Nanoparticles for Promoting Neurite Outgrowth. ACS Applied Materials & Interfaces, 2019, 11, 15322-15331.	8.0	47
27	Dicopper Dioxygenase Model Immobilized in Mesoporous Silica Nanoparticles for Toluene Oxidation: A Mechanism to Harness Both O Atoms of O2 for Catalysis. Journal of Physical Chemistry C, 2019, 123, 11032-11043.	3.1	5
28	Diatom-Mimicking Ultrahigh-Flux Mesoporous Silica Thin Membrane with Straight-Through Channels for Selective Protein and Nanoparticle Separations. Chemistry of Materials, 2019, 31, 1745-1751.	6.7	27
29	Critical Features for Mesoporous Silica Nanoparticles Encapsulated into Erythrocytes. ACS Applied Materials & Interfaces, 2019, 11, 4790-4798.	8.0	30
30	Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental, 2018, 231, 283-291.	20.2	92
31	Generation of Functional Dopaminergic Neurons from Reprogramming Fibroblasts by Nonviral-based Mesoporous Silica Nanoparticles. Scientific Reports, 2018, 8, 11.	3.3	86
32	Catalytic Oxidation of Light Alkanes Mediated at Room Temperature by a Tricopper Cluster Complex Immobilized in Mesoporous Silica Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 5431-5440.	6.7	16
33	Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chemistry of Materials, 2018, 30, 8303-8313.	6.7	4
34	Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species. Nanoscale Research Letters, 2018, 13, 123.	5.7	8
35	Defective Mesocrystal ZnO-Supported Gold Catalysts: Facilitating CO Oxidation via Vacancy Defects in ZnO. ACS Catalysis, 2018, 8, 6862-6869.	11.2	88
36	Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium. Journal of Photochemistry and Photobiology B: Biology, 2017, 169, 124-133.	3.8	58

#	Article	IF	CITATIONS
37	Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 22235-22251.	8.0	82
38	Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1941-1952.	3.3	33
39	Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons. Journal of Materials Chemistry B, 2017, 5, 3012-3023.	5.8	38
40	Ultrasmall gold nanoparticles confined in zeolite Y: Preparation and activity in CO oxidation. Applied Catalysis B: Environmental, 2017, 218, 506-514.	20.2	41
41	Morphology-controllable templated synthesis of three-dimensionally structured graphenic materials. Carbon, 2017, 111, 476-485.	10.3	5
42	Approach To Deliver Two Antioxidant Enzymes with Mesoporous Silica Nanoparticles into Cells. ACS Applied Materials & Interfaces, 2016, 8, 17944-17954.	8.0	57
43	Chemistry in confined space: a strategy for selective oxidation of hydrocarbons with high catalytic efficiencies and conversion yields under ambient conditions. Catalysis Science and Technology, 2016, 6, 7623-7630.	4.1	18
44	Large-Scale Uniform Two-Dimensional Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica Film for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 24382-24388.	3.1	35
45	Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy and Environmental Science, 2016, 9, 1361-1374.	30.8	70
46	Dipole field driven morphology evolution in biomimetic vaterite. CrystEngComm, 2016, 18, 1585-1599.	2.6	16
47	Defect-Mediated Gold Substitution Doping in ZnO Mesocrystals and Catalysis in CO Oxidation. ACS Catalysis, 2016, 6, 115-122.	11.2	54
48	Wang <i>etÂal.</i> Reply:. Physical Review Letters, 2015, 115, 149802.	7.8	2
49	Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering. Journal of Chemical Physics, 2015, 143, 094704.	3.0	4
50	Relaxation dynamics of surface-adsorbed water molecules in nanoporous silica probed by terahertz spectroscopy. Applied Physics Letters, 2015, 107, .	3.3	8
51	Preparation and Characterization of Ion-Irradiated Nanodiamonds as Photoacoustic Contrast Agents. Journal of Nanoscience and Nanotechnology, 2015, 15, 1037-1044.	0.9	15
52	Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma. Science and Technology of Advanced Materials, 2015, 16, 054205.	6.1	27
53	A room temperature catalyst for toluene aliphatic C–H bond oxidation: Tripodal tridentate copper complex immobilized in mesoporous silica. Journal of Catalysis, 2015, 322, 139-151.	6.2	51
54	Local pH tracking in living cells. Nanoscale, 2015, 7, 4217-4225.	5.6	15

#	Article	IF	CITATIONS
55	Synthesis of curtain-like crumpled boehmite and Î ³ -alumina nanosheets. CrystEngComm, 2015, 17, 1959-1967.	2.6	38
56	Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin. Journal of Materials Chemistry B, 2015, 3, 3447-3458.	5.8	50
57	A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for the plastic-based flexible dye-sensitized solar cells. Journal of Power Sources, 2015, 288, 221-228.	7.8	61
58	Formation of hollow silica nanospheres by reverse microemulsion. Nanoscale, 2015, 7, 9614-9626.	5.6	88
59	A General Method for Growing Large Area Mesoporous Silica Thin Films on Flat Substrates with Perpendicular Nanochannels. Journal of the American Chemical Society, 2015, 137, 3779-3782.	13.7	97
60	Killing cancer cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular levels of ROS. RSC Advances, 2015, 5, 86072-86081.	3.6	57
61	Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues. Organic and Biomolecular Chemistry, 2015, 13, 11096-11104.	2.8	4
62	Pore-size dependent THz absorption of nano-confined water. Optics Letters, 2015, 40, 2731.	3.3	11
63	Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy. Theranostics, 2014, 4, 798-807.	10.0	74
64	Two-dimensional crystals of mesoporous silica SBA-15 nanosheets with perpendicular and open channels. APL Materials, 2014, 2, 113303.	5.1	11
65	Intracellular Implantation of Enzymes in Hollow Silica Nanospheres for Protein Therapy: Cascade System of Superoxide Dismutase and Catalase. Small, 2014, 10, 4785-4795.	10.0	84
66	Structural and catalytic properties of supported Ni–Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition. Applied Catalysis B: Environmental, 2014, 147, 779-788.	20.2	116
67	New developments in the growth of 4 Angstrom carbon nanotubes in linear channels of zeolite template. Carbon, 2014, 76, 401-409.	10.3	10
68	Hollow mesoporous silica nanoparticles with tunable shell thickness and pore size distribution for application as broad-ranging pH nanosensor. Microporous and Mesoporous Materials, 2014, 190, 181-188.	4.4	31
69	Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38, 2043.	2.8	151
70	Efficient and Durable Au Alloyed Pd Single-Atom Catalyst for the Ullmann Reaction of Aryl Chlorides in Water. ACS Catalysis, 2014, 4, 1546-1553.	11.2	221
71	Mesostructured Arrays of Nanometerâ€spaced Gold Nanoparticles for Ultrahigh Number Density of SERS Hot Spots. Advanced Functional Materials, 2014, 24, 2544-2552.	14.9	50
72	Enhanced Activity and Stability of Lysozyme by Immobilization in the Matching Nanochannels of Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 6734-6743.	3.1	82

#	Article	IF	CITATIONS
73	Enzyme Encapsulated Hollow Silica Nanospheres for Intracellular Biocatalysis. ACS Applied Materials & Interfaces, 2014, 6, 6883-6890.	8.0	104
74	Boson Peak in Deeply Cooled Confined Water: A Possible Way to Explore the Existence of the Liquid-to-Liquid Transition in Water. Physical Review Letters, 2014, 112, 237802.	7.8	24
75	Mesoporous silica nanoparticles: a potential platform for generation of induced pluripotent stem cells?. Nanomedicine, 2014, 9, 377-380.	3.3	6
76	Catalysis by gold: New insights into the support effect. Nano Today, 2013, 8, 403-416.	11.9	211
77	High payload Gd(<scp>iii</scp>) encapsulated in hollow silica nanospheres for high resolution magnetic resonance imaging. Journal of Materials Chemistry B, 2013, 1, 639-645.	5.8	26
78	Compartmentalized Hollow Silica Nanospheres Templated from Nanoemulsions. Chemistry of Materials, 2013, 25, 352-364.	6.7	70
79	Altering the Tat-derived peptide bioactivity landscape by changing the arginine side chain length. Amino Acids, 2013, 44, 473-480.	2.7	12
80	Mesoporous silica supported cobalt catalysts for hydrogen generation in hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2013, 38, 7280-7290.	7.1	45
81	Understanding the synergistic effects of gold bimetallic catalysts. Journal of Catalysis, 2013, 308, 258-271.	6.2	178
82	Synthesis of Au–Ag alloy nanoparticles supported on silica gel via galvanic replacement reaction. Progress in Natural Science: Materials International, 2013, 23, 317-325.	4.4	33
83	A Fluorescent Organic Nanotube Assembled from Novel p-Phenylene Ethynylene-Based Dicationic Amphiphiles. Langmuir, 2013, 29, 2580-2587.	3.5	5
84	A broad range fluorescent pH sensor based on hollow mesoporous silica nanoparticles, utilising the surface curvature effect. Journal of Materials Chemistry B, 2013, 1, 5557.	5.8	45
85	A New Strategy for Intracellular Delivery of Enzyme Using Mesoporous Silica Nanoparticles: Superoxide Dismutase. Journal of the American Chemical Society, 2013, 135, 1516-1523.	13.7	139
86	Nonviral Cell Labeling and Differentiation Agent for Induced Pluripotent Stem Cells Based on Mesoporous Silica Nanoparticles. ACS Nano, 2013, 7, 8423-8440.	14.6	78
87	Controllable orientation of assembled gold nanorods on unstructured substrates. RSC Advances, 2013, 3, 17696.	3.6	1
88	Interplay of formation kinetics for highly oriented and mesostructured silicate–surfactant films at the air–water interface. RSC Advances, 2013, 3, 3270.	3.6	12
89	Protection of HeLa cells against ROS stress by CuZnSOD mimic system. Journal of Materials Chemistry B, 2013, 1, 6042.	5.8	10
90	A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. Journal of Materials Chemistry B, 2013, 1, 5279.	5.8	137

#	Article	IF	CITATIONS
91	Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42, 3862.	38.1	1,236
92	Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent. Microporous and Mesoporous Materials, 2013, 169, 7-15.	4.4	81
93	Enhanced Non-Endocytotic Uptake of Mesoporous Silica Nanoparticles by Shortening the Peptide Transporter Arginine Side Chain. ACS Applied Materials & Interfaces, 2013, 5, 12244-12248.	8.0	19
94	Selective Hydrogenation of Acetylene over SBAâ€15 Supported Au—Cu Bimetallic Catalysts. Journal of the Chinese Chemical Society, 2013, 60, 907-914.	1.4	24
95	A Palladium Bipyridyl Complex Grafted onto Nanosized MCMâ€41 as a Heterogeneous Catalyst for Negishi Coupling. ChemCatChem, 2013, 5, 1011-1019.	3.7	14
96	Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids. Journal of Materials Chemistry B, 2013, 1, 3128.	5.8	71
97	Functionalization of Mesoporous Silica Nanoparticles for Targeting, Biocompatibility, Combined Cancer Therapies and Theragnosis. Journal of Nanoscience and Nanotechnology, 2013, 13, 2399-2430.	0.9	42
98	Manganeseâ€enhanced MRI of rat brain based on slow cerebral delivery of manganese(II) with silicaâ€encapsulated Mn <i>_x</i> Fe _{1–<i>x</i>} O nanoparticles. NMR in Biomedicine, 2013, 26, 1176-1185.	2.8	19
99	Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction. Journal of Chemical Physics, 2013, 139, 064502.	3.0	35
100	Temperature dependence of structure and density for D ₂ O confined in MCM-41-S. Journal of Physics Condensed Matter, 2012, 24, 064106.	1.8	9
101	Dipole Field Guided Orientated Attachment of Nanocrystals to Twinâ€Brush ZnO Mesocrystals. Chemistry - A European Journal, 2012, 18, 16104-16113.	3.3	32
102	Surface charge effect in intracellular localization of mesoporous silicananoparticles as probed by fluorescent ratiometric pH imaging. RSC Advances, 2012, 2, 968-973.	3.6	61
103	Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au–Ag bimetallic catalyst. Applied Catalysis A: General, 2012, 439-440, 8-14.	4.3	68
104	Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Biomaterials, 2012, 33, 8003-8016.	11.4	98
105	Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling. International Journal of Molecular Sciences, 2012, 13, 16598-16623.	4.1	119
106	Bimetallic Au–Pd Alloy Catalysts for N ₂ O Decomposition: Effects of Surface Structures on Catalytic Activity. Journal of Physical Chemistry C, 2012, 116, 6222-6232.	3.1	128
107	Biomimetic ZnO plate twin-crystals periodical arrays. Chemical Communications, 2012, 48, 3215.	4.1	14
108	The origin of ZnO twin crystals in bio-inspired synthesis. CrystEngComm, 2012, 14, 1247-1255.	2.6	31

#	Article	IF	CITATIONS
109	Collapsed (kippah) hollow silica nanoparticles. Chemical Communications, 2012, 48, 3454.	4.1	32
110	Probing the Dynamics of Doxorubicin-DNA Intercalation during the Initial Activation of Apoptosis by Fluorescence Lifetime Imaging Microscopy (FLIM). PLoS ONE, 2012, 7, e44947.	2.5	71
111	Strong Metal–Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation. Journal of the American Chemical Society, 2012, 134, 10251-10258.	13.7	518
112	Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene. Journal of Catalysis, 2012, 285, 152-159.	6.2	107
113	Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple Stöberâ€Solution Growth Approach. Angewandte Chemie - International Edition, 2012, 51, 2173-2177.	13.8	291
114	Site-specific immobilization of cytochrome c on mesoporous silica through metal affinity adsorption to enhance activity and stability. New Journal of Chemistry, 2011, 35, 1809.	2.8	7
115	Bioinspired Design of a Cu–Zn–Imidazolate Mesoporous Silica Catalyst System for Superoxide Dismutation. Journal of Physical Chemistry C, 2011, 115, 20639-20652.	3.1	34
116	Corking and Uncorking a Catalytic Yolk-Shell Nanoreactor: Stable Gold Catalyst in Hollow Silica Nanosphere. Journal of Physical Chemistry Letters, 2011, 2, 2984-2988.	4.6	72
117	Highly Efficient and Regioselective Halogenation over Well Dispersed Rhenium-Promoted Mesoporous Zirconia. ACS Catalysis, 2011, 1, 786-793.	11.2	26
118	Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst. Journal of Materials Chemistry, 2011, 21, 789-794.	6.7	175
119	Mesoporous silica nanoparticles as nanocarriers. Chemical Communications, 2011, 47, 9972.	4.1	317
120	Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy. Nano Today, 2011, 6, 552-563.	11.9	56
121	Structural changes of Au–Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. Journal of Catalysis, 2011, 278, 288-296.	6.2	260
122	Recent Advances in Dynamic Monitoring of Drug Release of Nanoparticle Using Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging. Journal of the Chinese Chemical Society, 2011, 58, 798-804.	1.4	7
123	PEGylated silica nanoparticles encapsulating multiple magnetite nanocrystals for highâ€performance microscopic magnetic resonance angiography. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 81-88.	3.4	25
124	PtRuP nanoparticles supported on mesoporous carbon thin film as highly active anode materials for direct methanol fuel cellâ †. Catalysis Today, 2011, 160, 109-115.	4.4	37
125	Au–Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: Effects of Au/Cu ratios. Catalysis Today, 2011, 160, 103-108.	4.4	122
126	Mesoporous silica SBA-15 sheet with perpendicular nanochannels. Journal of Colloid and Interface Science, 2011, 362, 354-366.	9.4	37

#	Article	IF	CITATIONS
127	IV Delivery of Induced Pluripotent Stem Cells Attenuates Endotoxin-Induced Acute Lung Injury in Mice. Chest, 2011, 140, 1243-1253.	0.8	71
128	Density hysteresis of heavy water confined in a nanoporous silica matrix. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12206-12211.	7.1	94
129	Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex. Molecules, 2010, 15, 9157-9173.	3.8	63
130	Intracellular pHâ€Responsive Mesoporous Silica Nanoparticles for the Controlled Release of Anticancer Chemotherapeutics. Angewandte Chemie - International Edition, 2010, 49, 8214-8219.	13.8	312
131	Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials, 2010, 31, 5564-5574.	11.4	282
132	Highly Regioselective Oxybromination in an Aqueous System Using SBAâ€15 Supported Sulfated Zirconia Catalyst. Journal of the Chinese Chemical Society, 2010, 57, 820-828.	1.4	13
133	Low-temperature dynamics of water confined in a hydrophobic mesoporous material. Physical Review E, 2010, 82, 020501.	2.1	21
134	Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy. Journal of Materials Chemistry, 2010, 20, 6149.	6.7	200
135	Cytochrome c covalently immobilized on mesoporous silicas as a peroxidase: Orientation effect. Journal of Materials Chemistry, 2010, 20, 4653.	6.7	40
136	Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix. Journal of Chemical Physics, 2009, 130, 134512.	3.0	46
137	Environmental Friendly and Highly Regioselective Oxybromination in An Aqueous System Using SBA-15 Supported Sulfated Zirconia Catalyst. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	0
138	Nearâ€Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials, 2009, 19, 215-222.	14.9	285
139	In vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy. Advanced Materials, 2009, 21, 172-177.	21.0	196
140	Uniform Mesoporous Silica Hexagon and Its Twoâ€Đimensional Colloidal Crystal. ChemPhysChem, 2009, 10, 2628-2632.	2.1	14
141	On the Confinement Effect During Catalytic Reaction Over Al-MCM-41. Topics in Catalysis, 2009, 52, 2-11.	2.8	14
142	Size Effect on Cell Uptake in Well‧uspended, Uniform Mesoporous Silica Nanoparticles. Small, 2009, 5, 1408-1413.	10.0	898
143	Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging. Journal of Biomedical Science, 2009, 16, 86.	7.0	50
144	Using well-defined EOnMAm diblock amphiphilic copolymers as templates for synthesis of mesoporous silicas with different mesostructures. Microporous and Mesoporous Materials, 2009, 123, 331-337.	4.4	9

#	Article	IF	CITATIONS
145	Coupling of acyl chlorides with triarylbismuths catalyzed by palladium bipyridyl complex anchored on nanosized MCM-41: A recyclable and atom-efficient catalytic process for the synthesis of diaryl and alkyl aryl ketones. Journal of Molecular Catalysis A, 2009, 307, 88-92.	4.8	31
146	Highly-efficient and recyclable nanosized MCM-41 anchored palladium bipyridyl complex-catalyzed coupling of acyl chlorides and terminal alkynes for the formation of ynones. Tetrahedron, 2009, 65, 10134-10141.	1.9	38
147	Mesoporous materials for encapsulating enzymes. Nano Today, 2009, 4, 165-179.	11.9	418
148	Comparison of the promotion effects on sulfated mesoporous zirconia catalysts achieved by alumina and gallium. Applied Catalysis A: General, 2009, 365, 173-179.	4.3	17
149	Biomimetic Synthesis of Nacrelike Faceted Mesocrystals of ZnOâ^'Gelatin Composite. Journal of Physical Chemistry C, 2009, 113, 18053-18061.	3.1	92
150	PtRu Nanoparticles Supported on Ozone-Treated Mesoporous Carbon Thin Film As Highly Active Anode Materials for Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2009, 113, 16158-16168.	3.1	41
151	Absence of the Density Minimum of Supercooled Water in Hydrophobic Confinement. Journal of Physical Chemistry B, 2009, 113, 5007-5010.	2.6	34
152	Alumina-Promoted Sulfated Mesoporous Zirconia Catalysts. Journal of Physical Chemistry C, 2009, 113, 5212-5221.	3.1	31
153	Synthesis of hollow silica nanospheres with a microemulsion as the template. Chemical Communications, 2009, , 3542.	4.1	156
154	Desulfurization of Vacuum Gasoil by MCM-41 Supported Molybdenumâ^'Nickel Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 1797-1803.	3.7	17
155	Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. Journal of Materials Chemistry, 2009, 19, 5737.	6.7	232
156	Synthesis of Thermally Stable and Highly Active Bimetallic Auâ^'Ag Nanoparticles on Inert Supports. Chemistry of Materials, 2009, 21, 410-418.	6.7	262
157	CO Oxidation Catalyzed by Auâ^'Ag Bimetallic Nanoparticles Supported in Mesoporous Silica. Journal of Physical Chemistry C, 2009, 113, 17831-17839.	3.1	156
158	Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. Journal of Materials Chemistry, 2009, 19, 1252.	6.7	147
159	Hydroxo-Bridged Dinuclear Cupric Complexes Encapsulated in Various Mesoporous Silicas to Mimic the Catalytic Activity of Catechol Oxidases: Reactivity and Selectivity Study. Journal of Physical Chemistry C, 2009, 113, 16058-16069.	3.1	19
160	Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam. Nano Letters, 2009, 9, 399-404.	9.1	321
161	High ontrast Paramagnetic Fluorescent Mesoporous Silica Nanorods as a Multifunctional Cellâ€Imaging Probe. Small, 2008, 4, 186-191.	10.0	199
162	Mesoporous Silica Nanoparticles Improve Magnetic Labeling Efficiency in Human Stem Cells. Small, 2008, 4, 619-626.	10.0	128

#	Article	IF	CITATIONS
163	Mesoporous Silica Nanoparticles as a Delivery System of Gadolinium for Effective Human Stem Cell Tracking. Small, 2008, 4, 1445-1452.	10.0	201
164	Solidâ€state Pâ€31 NMR study of the formation of hydroxyapatite in the presence of glutaric acid. Magnetic Resonance in Chemistry, 2008, 46, 330-334.	1.9	19
165	Multifunctional Mesoporous Silica Nanoparticles for Intracellular Labeling and Animal Magnetic Resonance Imaging Studies. ChemBioChem, 2008, 9, 53-57.	2.6	200
166	Synthesis and Characterization of Positiveâ€Charge Functionalized Mesoporous Silica Nanoparticles for Oral Drug Delivery of an Antiâ€Inflammatory Drug. Advanced Functional Materials, 2008, 18, 3283-3292.	14.9	184
167	Characterizations of aluminum-promoted sulfated zirconia on mesoporous MCM-41 silica: Butane isomerization. Microporous and Mesoporous Materials, 2008, 110, 260-270.	4.4	40
168	Influence of the incorporation of metals on the optical properties of MCM-41. Journal of Luminescence, 2008, 128, 553-558.	3.1	7
169	Catalytic behavior of nanostructured sulfated zirconia promoted by alumina: Butane isomerization. Catalysis Today, 2008, 131, 162-172.	4.4	22
170	Development of in vitro tooth staining model and usage of catalysts to elevate the effectiveness of tooth bleaching. Dental Materials, 2008, 24, 57-66.	3.5	42
171	Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicology and Applied Pharmacology, 2008, 231, 208-215.	2.8	122
172	Well-Ordered Mesoporous Carbon Thin Film with Perpendicular Channels:  Application to Direct Methanol Fuel Cell. Journal of Physical Chemistry C, 2008, 112, 867-873.	3.1	88
173	Au–Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chemical Communications, 2008, , 3187.	4.1	288
174	Synthesis of gold nanoparticles containing mesoporous silica by using gelatin as template: CO oxidation reaction. Studies in Surface Science and Catalysis, 2008, 174, 297-300.	1.5	2
175	One-step synthesis of ordered mesostructural organic/silica nanocomposites with tunable fluorescence surfactants. Journal of Materials Chemistry, 2008, 18, 1771.	6.7	6
176	Density Measurement of 1-D Confined Water by Small Angle Neutron Scattering Method:Â Pore Size and Hydration Level Dependences. Journal of Physical Chemistry B, 2008, 112, 4309-4312.	2.6	36
177	Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime. Physical Review B, 2008, 77, .	3.2	23
178	Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 424-428.	7.1	273
179	The anomalous behavior of the density of water in the range 30 K < <i>T</i> < 373 K. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18387-18391.	7.1	208
180	Alumina-promoted sulfated mesoporous zirconia and catalytic application in butane isomerization. Studies in Surface Science and Catalysis, 2007, 165, 679-683.	1.5	2

#	Article	IF	CITATIONS
181	Multifunctional mesoporous silica nanoparticles as dual-mode imaging probes. Studies in Surface Science and Catalysis, 2007, , 1804-1810.	1.5	4
182	Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification. Journal of Physical Chemistry C, 2007, 111, 18731-18737.	3.1	135
183	Characterization of the Phosphate Units in Rat Dentin by Solid-State NMR Spectroscopy. Chemistry of Materials, 2007, 19, 6088-6094.	6.7	31
184	Electron Transfer-Induced Hydrogenation of Anthracene Catalyzed by Gold and Silver Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 9723-9728.	3.1	53
185	Preparation and Characterization of Vanadium Oxide Species Supported on Mesoporous Silica for the Hydroxylation of Benzene. Journal of Physical Chemistry C, 2007, 111, 3873-3882.	3.1	28
186	Bifunctional Magnetic Silica Nanoparticles for Highly Efficient Human Stem Cell Labeling. Nano Letters, 2007, 7, 149-154.	9.1	486
187	Double-quantum filtered heteronuclear correlation spectroscopy under magic angle spinning. Solid State Nuclear Magnetic Resonance, 2007, 31, 55-61.	2.3	14
188	Anchored palladium bipyridyl complex in nanosized MCM-41: a recyclable and efficient catalyst for the Kumada–Corriu reaction. Tetrahedron, 2007, 63, 4304-4309.	1.9	51
189	Enhanced catalytic activity for butane isomerization with alumina-promoted tungstated mesoporous zirconia. Applied Catalysis A: General, 2007, 323, 9-17.	4.3	14
190	The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 2007, 28, 2959-2966.	11.4	561
191	Dynamical properties of confined supercooled water: an NMR study. Journal of Physics Condensed Matter, 2006, 18, S2285-S2297.	1.8	40
192	The violation of the Stokes-Einstein relation in supercooled water. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12974-12978.	7.1	287
193	Nonionic fluorescent oligomeric surfactant for ordered mesoporous silica structure. Journal of Materials Chemistry, 2006, 16, 348-350.	6.7	13
194	Multifunctional Composite Nanoparticles:Â Magnetic, Luminescent, and Mesoporous. Chemistry of Materials, 2006, 18, 5170-5172.	6.7	321
195	Effect of spin configuration on the reactivity of cytochromecimmobilized in mesoporous silica. Molecular Physics, 2006, 104, 1635-1641.	1.7	17
196	Effect of Pyrene Additive on the Growth of Gold Nanoparticles in Aqueous Sodium Alkyl Sulfate Micellar Solutions. Journal of the Chinese Chemical Society, 2006, 53, 1263-1268.	1.4	1
197	Periodic mesoporous silicas via templating of new triblock amphiphilic copolymers. Microporous and Mesoporous Materials, 2006, 91, 151-155.	4.4	18
198	Solid-State NMR Study of the Transformation of Octacalcium Phosphate to Hydroxyapatite:  A Mechanistic Model for Central Dark Line Formation. Journal of the American Chemical Society, 2006, 128, 6909-6918.	13.7	157

#	Article	IF	CITATIONS
199	Highly active and stable n-pentane isomerization catalysts without noble metal containing: Al- or Ga-promoted tungstated zirconia. Catalysis Letters, 2006, 111, 187-193.	2.6	11
200	Au–Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. Journal of Catalysis, 2006, 237, 197-206.	6.2	132
201	Tungstated zirconia catalyzed bromination of phenol red under nearly neutral solution. Applied Catalysis B: Environmental, 2006, 63, 1-8.	20.2	35
202	Effect of La doping on magnetotransport and magnetic properties of double perovskite Sr2FeMoO6 system. Journal of Magnetism and Magnetic Materials, 2006, 299, 348-355.	2.3	14
203	Self-regulating and diameter-selective growth of GaN nanowires. Nanotechnology, 2006, 17, S332-S337.	2.6	21
204	Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply supercooled water confined in nanoporous silica matrices. Journal of Physics Condensed Matter, 2006, 18, S2261-S2284.	1.8	67
205	One-Step Grafting of Al2O3onto Acid-Made Mesoporous Silica. Journal of the Chinese Chemical Society, 2005, 52, 717-720.	1.4	3
206	Faceted single crystals of mesoporous silica SBA-16 from a ternary surfactant system: surface roughening model. Microporous and Mesoporous Materials, 2005, 81, 241-249.	4.4	33
207	Characterization of the location and interfacial states of gallium in gallium/MCM-41 composites. Microporous and Mesoporous Materials, 2005, 79, 195-203.	4.4	29
208	Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nuclear Magnetic Resonance, 2005, 27, 266-270.	2.3	26
209	Alumina-promoted mesoporous sulfated zirconia: A catalyst for n-butane isomerization. Applied Catalysis A: General, 2005, 286, 128-136.	4.3	43
210	A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. Journal of Catalysis, 2005, 233, 186-197.	6.2	338
211	Hydrogenation of Anthracene Catalyzed by Surfactant-Protected Gold Nanoparticles in Aqueous Solution: Size Dependence. ChemPhysChem, 2005, 6, 2021-2025.	2.1	33
212	Palladium Bipyridyl Complex Anchored on Nanosized MCM-41 as a Highly Efficient and Recyclable Catalyst for Heck Reaction ChemInform, 2005, 36, no.	0.0	0
213	CO oxidation over gold nanocatalyst confined in mesoporous silica. Applied Catalysis A: General, 2005, 284, 199-206.	4.3	147
214	Platinum- and iron-doubly promoted tungstated zirconia catalyst for n-butane isomerization reaction. Applied Catalysis A: General, 2005, 296, 90-99.	4.3	11
215	UTILIZATION OF POLARIZED ELECTRON SPIN OF ORGANIC MOLECULES IN QUANTUM COMPUTING. International Journal of Quantum Information, 2005, 03, 205-213.	1.1	3
216	Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers. Chemistry of Materials, 2005, 17, 4570-4573.	6.7	418

#	Article	IF	CITATIONS
217	Enhancing Stability and Oxidation Activity of Cytochrome c by Immobilization in the Nanochannels of Mesoporous Aluminosilicates. Journal of Physical Chemistry B, 2005, 109, 12277-12286.	2.6	101
218	Characterization and Biomimetic Study of a Hydroxo-Bridged Dinuclear Phenanthroline Cupric Complex Encapsulated in Mesoporous Silica:Â Models for Catechol Oxidase. Journal of Physical Chemistry B, 2005, 109, 775-784.	2.6	68
219	Evolution of Catalytic Activity of Auâ^'Ag Bimetallic Nanoparticles on Mesoporous Support for CO Oxidation. Journal of Physical Chemistry B, 2005, 109, 18860-18867.	2.6	233
220	Distribution of Gallium Nanocrystals in Ga/MCM-41 Mesocomposites by Continuous-Flow Hyperpolarized129Xe NMR Spectroscopy. Analytical Chemistry, 2005, 77, 3379-3382.	6.5	19
221	Synergistic Effect in an Auâ^'Ag Alloy Nanocatalyst:Â CO Oxidation. Journal of Physical Chemistry B, 2005, 109, 40-43.	2.6	351
222	Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB Journal, 2005, 19, 2014-2016.	0.5	254
223	High Catalytic Activity for CO Oxidation of Gold Nanoparticles Confined in Acidic Support Al-SBA-15 at Low Temperatures. Journal of Physical Chemistry B, 2005, 109, 18042-18047.	2.6	105
224	Pyrene-Assisted Synthesis of Size-Controlled Gold Nanoparticles in Sodium Dodecyl Sulfate Micelles. Langmuir, 2005, 21, 8947-8951.	3.5	42
225	Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water. Physical Review Letters, 2005, 95, 117802.	7.8	439
226	UTILIZATION OF POLARIZED ELECTRON SPIN OF ORGANIC MOLECULES IN QUANTUM COMPUTING. , 2005, , .		0
227	Instantaneous normal mode analysis of orientational motions in liquid water: Local structural effects. Journal of Chemical Physics, 2004, 121, 3605-3612.	3.0	23
228	Fabrication of Super Water-Repellent Surfaces by Nanosphere Lithography. Materials Research Society Symposia Proceedings, 2004, 823, W11.4.1.	0.1	0
229	Preparation and characterization of MCM-41-supported hydroxo-bridged dicupric?phenanthroline complex. Journal of Catalysis, 2004, 228, 1-11.	6.2	22
230	Comparison of the promoting effects of gallium and aluminium on the n-butane isomerization actvity of sulfated zirconia. Reaction Kinetics and Catalysis Letters, 2004, 83, 85-92.	0.6	7
231	Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chemistry of Materials, 2004, 16, 561-564.	6.7	524
232	Direct Method for Surface Silyl Functionalization of Mesoporous Silica. Langmuir, 2004, 20, 3231-3239.	3.5	98
233	Al- and Ga-promoted WO3/ZrO2 strong solid acid catalysts and their catalytic activities in n-butane isomerization. Catalysis Today, 2004, 93-95, 129-134.	4.4	34
234	Design of a high-performance catalyst for CO oxidation: Au nanoparticles confined in mesoporous aluminosilicate. Catalysis Today, 2004, 93-95, 141-147.	4.4	29

#	Article	IF	CITATIONS
235	High resolution 31P NMR study of octacalcium phosphate. Solid State Nuclear Magnetic Resonance, 2004, 26, 99-104.	2.3	41
236	A simple synthesis of well-ordered super-microporous aluminosilicate. Microporous and Mesoporous Materials, 2004, 76, 203-208.	4.4	31
237	Palladium bipyridyl complex anchored on nanosized MCM-41 as a highly efficient and recyclable catalyst for Heck reaction. Tetrahedron Letters, 2004, 45, 7503-7506.	1.4	51
238	n-Pentane isomerization over platinum-promoted W/Zr mixed oxides supported on mesoporous silica. Applied Catalysis A: General, 2004, 261, 211-219.	4.3	24
239	Strongly acidic mesoporous aluminosilicates prepared from zeolite seeds: acylation of anisole with octanyl chloride. Catalysis Today, 2004, 93-95, 365-370.	4.4	26
240	Synthesis of nano-sized mesoporous silicas with metal incorporation. Catalysis Today, 2004, 97, 81-87.	4.4	76
241	n-Pentane isomerization over promoted SZ/MCM-41 catalysts. Catalysis Today, 2004, 97, 307-313.	4.4	32
242	Electropolymerization of Starburst Triarylamines and Their Application to Electrochromism and Electroluminescence. Chemistry of Materials, 2004, 16, 654-661.	6.7	138
243	Gadolinium(III)-Incorporated Nanosized Mesoporous Silica as Potential Magnetic Resonance Imaging Contrast Agents. Journal of Physical Chemistry B, 2004, 108, 15608-15611.	2.6	137
244	Controlling the Morphology and Mesostructural Orderness of the Mesoporous Silica Nanoparticles. Chemistry Letters, 2004, 33, 672-673.	1.3	19
245	Synthesis of SBA-1 Mesoporous Silica Crystals with Tunable Pore Size Using Sodium Silicate and Alkyltrimethylammonium Surfactants. Chemistry Letters, 2004, 33, 374-375.	1.3	10
246	Ga-Promoted Tungstated Zirconia Catalyst for n-Butane Isomerization. Catalysis Letters, 2003, 85, 177-182.	2.6	18
247	Control of single crystal morphology of SBA-1 mesoporous silica. Journal of Materials Chemistry, 2003, 13, 2853.	6.7	49
248	Aluminum-promoted tungstated zirconia catalyst in n-butane isomerization reaction. Journal of Catalysis, 2003, 215, 45-56.	6.2	37
249	Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. ChemInform, 2003, 34, no.	0.0	0
250	Hydrocracking in Al-MCM-41: diffusion effect. Microporous and Mesoporous Materials, 2003, 66, 209-218.	4.4	23
251	High loading of C60 in nanochannels of mesoporous MCM-41 materials. Microporous and Mesoporous Materials, 2003, 57, 199-209.	4.4	17
252	(VO)2+ Ions Immobilized on Functionalized Surface of Mesoporous Silica and Their Activity toward the Hydroxylation of Benzene. Journal of Physical Chemistry B, 2003, 107, 2543-2551.	2.6	56

#	Article	IF	CITATIONS
253	Translational and rotational dynamics of water in mesoporous silica materials: MCM-41-S and MCM-48-S. Journal of Chemical Physics, 2003, 119, 3963-3971.	3.0	87
254	Chemical coating of the aluminum oxides onto mesoporous silicas by a one-pot grafting method. Studies in Surface Science and Catalysis, 2003, , 311-314.	1.5	3
255	Ultrastable acidic MCM-48-S assembled from zeolite seeds. Studies in Surface Science and Catalysis, 2003, , 557-560.	1.5	21
256	Nanoporous SiO2 films prepared by surfactant templating method - a novel antireflective coating technology. Studies in Surface Science and Catalysis, 2003, 146, 539-542.	1.5	10
257	W/Zr mixed oxide supported on mesoporous silica as catalyst for n-pentane isomerization. Studies in Surface Science and Catalysis, 2003, 146, 569-572.	1.5	2
258	Roles of pore size and Al content on the catalytic performance of Al-MCM- 41 during hydrocracking reaction. Studies in Surface Science and Catalysis, 2003, , 681-684.	1.5	2
259	The Early Stage of a βâ€Hairpin Folding: The Role of Water Molecules. Journal of the Chinese Chemical Society, 2002, 49, 783-789.	1.4	1
260	Reducing Surfactants–Silica Interactions for High-Coverage Silane-Modification of MCM-41 and MCM-48 Silicas. Chemistry Letters, 2002, 31, 566-567.	1.3	4
261	Using Au nanoparticles-surfactant aqueous solution for a convenient preparation of mesoporous aluminosilicates containing Au-nanoparticles. Studies in Surface Science and Catalysis, 2002, , 329-336.	1.5	6
262	Optimum Synthesis of Mesoporous Silica Materials from Acidic Condition. Journal of the Chinese Chemical Society, 2002, 49, 899-906.	1.4	5
263	A study of morphology of mesoporous silica SBA-15. Studies in Surface Science and Catalysis, 2002, 141, 387-394.	1.5	15
264	EPR studies of free radical reactions of C60 embedded in mesoporous MCM-41 materials in aqueous solution. Physical Chemistry Chemical Physics, 2002, 4, 3106-3111.	2.8	12
265	Ia3d Cubic mesoporous silicas using EO17MA23 diblock copolymers made from ATRP. Chemical Communications, 2002, , 2878-2879.	4.1	48
266	Isomerization of n-butane by gallium-promoted sulfated zirconia supported on MCM-41. Green Chemistry, 2002, 4, 257-260.	9.0	27
267	Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Accounts of Chemical Research, 2002, 35, 927-935.	15.6	393
268	Salt effect in post-synthesis hydrothermal treatment of MCM-41. Microporous and Mesoporous Materials, 2002, 55, 69-80.	4.4	38
269	Title is missing!. Catalysis Letters, 2002, 78, 223-229.	2.6	41
270	Well-Dispersed Gallium-Promoted Sulfated Zirconia on Mesoporous MCM-41 Silica. Catalysis Letters, 2002, 83, 281-285.	2.6	17

#	Article	IF	CITATIONS
271	Hollow spheres of MCM-41 aluminosilicate with pinholes. Chemical Communications, 2001, , 1970-1971.	4.1	44
272	Direct Synthesis of MCM-41 Mesoporous Aluminosilicates Containing Au Nanoparticles in Aqueous Solution. Chemistry Letters, 2001, 30, 1116-1117.	1.3	28
273	Synthesis of elastic macrospheres of silica–surfactant nanocomposites. Journal of Physics and Chemistry of Solids, 2001, 62, 1555-1559.	4.0	14
274	Preparation and characterization of MCM-41 and silica supported nickel boride catalysts. Journal of Molecular Catalysis A, 2001, 165, 159-167.	4.8	22
275	Post-synthesis treatment of acid-made mesoporous silica materials by ammonia hydrothermal process. Microporous and Mesoporous Materials, 2001, 44-45, 129-137.	4.4	18
276	Counterion and alcohol effect in the formation of mesoporous silica. Microporous and Mesoporous Materials, 2001, 48, 135-141.	4.4	43
277	Direct impregnation method for preparing sulfated zirconia supported on mesoporous silica. Microporous and Mesoporous Materials, 2001, 50, 201-208.	4.4	57
278	Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve. Applied Catalysis A: General, 2001, 215, 21-30.	4.3	81
279	Mechanical unfolding and refolding of proteins: An off-lattice model study. Physical Review E, 2001, 63, 021905.	2.1	17
280	Tubular Morphology of Mesoporous Silica MCMâ€41. Journal of the Chinese Chemical Society, 2000, 47, 1077-1082.	1.4	4
281	Tubular MCM-41-supported transition metal oxide catalysts for ethylbenzene dehydrogenation reaction. Applied Catalysis A: General, 2000, 198, 103-114.	4.3	57
282	In-situ study of MCM-41-supported iron oxide catalysts by XANES and EXAFS. Applied Catalysis A: General, 2000, 198, 115-126.	4.3	48
283	One-dimensional metal string complexes. Journal of Magnetism and Magnetic Materials, 2000, 209, 80-83.	2.3	173
284	Hierarchical organization of silicate/surfactant system: Biomimetic inorganic materials. AIP Conference Proceedings, 2000, , .	0.4	0
285	Control of morphology in synthesizing mesoporous silica. Pure and Applied Chemistry, 2000, 72, 137-146.	1.9	77
286	The Synthesis and Characterization of Mesoporous Molecular Sieves MCM-41 with Interconnected Channels. Studies in Surface Science and Catalysis, 2000, 129, 15-22.	1.5	6
287	Counterion Effect in Acid Synthesis of Mesoporous Silica Materials. Journal of Physical Chemistry B, 2000, 104, 7885-7894.	2.6	105
288	A direct surface silyl modification of acid-synthesized mesoporous silica. New Journal of Chemistry, 2000, 24, 253-255.	2.8	46

#	Article	IF	CITATIONS
289	Extensive Void Defects in Mesoporous Aluminosilicate MCM-41. Journal of Physical Chemistry B, 2000, 104, 8967-8975.	2.6	167
290	Studies on Mesoporous Self-Organizing Aluminosilica. Journal of Cluster Science, 1999, 10, 271-293.	3.3	15
291	The Synthesis and Application of the Mesoporous Molecular Sieves MCMâ€41 — A Review. Journal of the Chinese Chemical Society, 1999, 46, 495-507.	1.4	23
292	Hierarchical organization of mesoporous MCM-41 ropes. Chemical Communications, 1999, , 583-584.	4.1	58
293	The effect of alkan-1-ols addition on the structural ordering and morphology of mesoporous silicate MCM-41. Journal of Materials Chemistry, 1999, 9, 1197-1201.	6.7	43
294	Orientational Relaxation Dynamics of Liquid Water Studied by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 1999, 103, 3699-3705.	2.6	60
295	Control of mesostructure and morphology of surfactant-templated silica in a mixed surfactant system. Physical Chemistry Chemical Physics, 1999, 1, 5051-5058.	2.8	39
296	Ammonia Hydrothermal Treatment on Mesoporous Silica Structure Synthesized from Acidic Route. Chemistry Letters, 1999, 28, 1341-1342.	1.3	20
297	Mesoporous Molecular Sieves MCM-41 with a Hollow Tubular Morphology. Chemistry of Materials, 1998, 10, 581-589.	6.7	99
298	Hierarchical Order in Hollow Spheres of Mesoporous Silicates. Chemistry of Materials, 1998, 10, 3772-3776.	6.7	152
299	Abâ€inito Calculations in Reductive Bondâ€breaking Reaction of Câ€X Bond in CH ₃ X and CH ₂ X ₂ with X = F and Cl. Journal of the Chinese Chemical Society, 1997, 44, 187-193.	1.4	0
300	Oxidation of Fullerenes by Ozone. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 1033-1044.	0.6	28
301	Oxidation of Fullerenes by Ozone. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 1325-1336.	0.6	8
302	Effect of delayed neutralization on the synthesis of mesoporous MCM-41 molecular sieves. Microporous Materials, 1997, 10, 111-121.	1.6	113
303	Incorporation of C60in Layered Double Hydroxide. Journal of the American Chemical Society, 1996, 118, 4411-4418.	13.7	51
304	Hole-Burning Structure and Mechanism of Acridine and Aminoacridines Doped in Polyvinyl Alcohol Films. Molecular Crystals and Liquid Crystals, 1996, 291, 175-181.	0.3	6
305	Synthesis of Thermally Stable MCMâ€41 at Ambient Temperature. Journal of the Chinese Chemical Society, 1996, 43, 375-378.	1.4	22
306	How a solid can be turned into a gas without passing through a first-order phase transformation. Physical Review E, 1995, 51, R3795-R3798.	2.1	17

#	Article	IF	CITATIONS
307	Statistical Inference of Distribution of Crystal Size by Xâ€Ray Powder Diffraction. Journal of the Chinese Chemical Society, 1994, 41, 65-73.	1.4	0
308	Micelles of SDS Surfactants in Concentrated NaCl Solutions. Journal of the Chinese Chemical Society, 1992, 39, 43-48.	1.4	1
309	Molecular dynamics study of liquid-solid transition of dense Lennard-Jones liquid. Molecular Physics, 1992, 75, 1329-1344.	1.7	22
310	Rate of Reaction of Electron Transfer over a Long Range and Mediated by a Solvent. Journal of the Chinese Chemical Society, 1992, 39, 529-541.	1.4	0
311	Size of Micelles Determined by Static Fluorescence Quenching. Journal of the Chinese Chemical Society, 1991, 38, 513-520.	1.4	2
312	Force Constant Calculation in Massâ€Weighted Cartesian Coordinates. Linear XYX and XYZ Type Molecules. Journal of the Chinese Chemical Society, 1970, 17, 193-206.	1.4	0