
Sarah Jane Butcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Organisation of Tick-Borne Encephalitis Virus. Viruses, 2022, 14, 792.	1.5	19
2	Membrane-Containing Icosahedral DNA Bacteriophages. , 2021, , 36-44.		0
3	Identification of a conserved virion-stabilizing network inside the interprotomer pocket of enteroviruses. Communications Biology, 2021, 4, 250.	2.0	11
4	Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics, 2021, 11, 1259.	1.3	5
5	A comparative analysis of parechovirus protein structures with other picornaviruses. Open Biology, 2021, 11, 210008.	1.5	2
6	Virus structure and structure-based antivirals. Current Opinion in Virology, 2021, 51, 16-24.	2.6	9
7	Advances in high-throughput methods for the identification of virus receptors. Medical Microbiology and Immunology, 2020, 209, 309-323.	2.6	14
8	Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, 370, 856-860.	6.0	1,441
9	Structure of Nora virus at 2.7ÂÃ resolution and implications for receptor binding, capsid stability and taxonomy. Scientific Reports, 2020, 10, 19675.	1.6	3
10	Extracellular vesicles provide a capsidâ€free vector for oncolytic adenoviral DNA delivery. Journal of Extracellular Vesicles, 2020, 9, 1747206.	5.5	27
11	Complementary substrate specificity and distinct quaternary assembly of the <i>Escherichia coli</i> aerobic and anaerobic β-oxidation trifunctional enzyme complexes. Biochemical Journal, 2019, 476, 1975-1994.	1.7	8
12	A novel druggable interprotomer pocket in the capsid of rhino- and enteroviruses. PLoS Biology, 2019, 17, e3000281.	2.6	36
13	Extracellular Albumin and Endosomal Ions Prime Enterovirus Particles for Uncoating That Can Be Prevented by Fatty Acid Saturation. Journal of Virology, 2019, 93, .	1.5	28
14	Adenovirus flow in host cell networks. Open Biology, 2019, 9, 190012.	1.5	18
15	A 2.8-Angstrom-Resolution Cryo-Electron Microscopy Structure of Human Parechovirus 3 in Complex with Fab from a Neutralizing Antibody. Journal of Virology, 2019, 93, .	1.5	13
16	Progress in human picornavirus research: New findings from the AIROPico consortium. Antiviral Research, 2019, 161, 100-107.	1.9	3
17	Intrinsically-disordered N-termini in human parechovirus 1 capsid proteins bind encapsidated RNA. Scientific Reports, 2018, 8, 5820.	1.6	9
18	Tick-Borne Encephalitis Virus: A Structural View. Viruses, 2018, 10, 350.	1.5	64

#	Article	IF	CITATIONS
19	Genomic RNA folding mediates assembly of human parechovirus. Nature Communications, 2017, 8, 5.	5.8	67
20	Strain-dependent neutralization reveals antigenic variation of human parechovirus 3. Scientific Reports, 2017, 7, 12075.	1.6	30
21	Influenza virus NS1 protein binds cellular DNA to block transcription of antiviral genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1440-1448.	0.9	29
22	Crystal Structure of the Measles Virus Nucleoprotein Core in Complex with an N-Terminal Region of Phosphoprotein. Journal of Virology, 2016, 90, 2849-2857.	1.5	69
23	Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis. Nature Communications, 2016, 7, 11387.	5.8	34
24	Structural Basis of Human Parechovirus Neutralization by Human Monoclonal Antibodies. Journal of Virology, 2015, 89, 9571-9580.	1.5	32
25	A technique to increase protein yield in a rabbit reticulocyte lysate translation system. BioTechniques, 2014, 56, 36-39.	0.8	28
26	Hydrophobin Film Structure for HFBI and HFBII and Mechanism for Accelerated Film Formation. PLoS Computational Biology, 2014, 10, e1003745.	1.5	27
27	A 3D cellular context for the macromolecular world. Nature Structural and Molecular Biology, 2014, 21, 841-845.	3.6	47
28	Reply to "Updated Phylogenetic Analysis of Arenaviruses Detected in Boid Snakes". Journal of Virology, 2014, 88, 1401-1401.	1.5	14
29	Binding and processing of small dsRNA molecules by the class 1 RNase III protein encoded by sweet potato chlorotic stunt virus. Journal of General Virology, 2014, 95, 486-495.	1.3	11
30	Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses. Cell and Bioscience, 2014, 4, 37.	2.1	7
31	Combined approaches to flexible fitting and assessment in virus capsids undergoing conformational change. Journal of Structural Biology, 2014, 185, 427-439.	1.3	23
32	Chlorosomes: Structure, Function and Assembly. Advances in Photosynthesis and Respiration, 2014, , 77-109.	1.0	32
33	Association between the Intrinsically Disordered Protein PEX19 and PEX3. PLoS ONE, 2014, 9, e103101.	1.1	7
34	SPECT/CT imaging of radiolabeled cubosomes and hexosomes forÂpotential theranostic applications. Biomaterials, 2013, 34, 8491-8503.	5.7	71
35	Colloidal properties and gelation of aqueous dispersions of conductive poly(benzimidazobenzophenanthroline) derivatives. Polymer, 2013, 54, 694-701.	1.8	6
36	Nanostructured aqueous dispersions of citrem interacting with lipids and PEGylated lipids. RSC Advances, 2013, 3, 24576.	1.7	23

#	Article	IF	CITATIONS
37	Insights into Head-Tailed Viruses Infecting Extremely Halophilic Archaea. Journal of Virology, 2013, 87, 3248-3260.	1.5	57
38	Structural and Functional Roles of Carotenoids in Chlorosomes. Journal of Bacteriology, 2013, 195, 1727-1734.	1.0	22
39	Diblock copolymers consisting of a polymerized ionic liquid and poly(N-isopropylacrylamide). Effects of PNIPAM block length and counter ion on self-assembling and thermal properties. Polymer Chemistry, 2013, 4, 1014-1024.	1.9	70
40	Structural and Functional Analysis of Coxsackievirus A9 Integrin α _v β ₆ Binding and Uncoating. Journal of Virology, 2013, 87, 3943-3951.	1.5	46
41	Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10604-10609.	3.3	82
42	Isolation, Identification, and Characterization of Novel Arenaviruses, the Etiological Agents of Boid Inclusion Body Disease. Journal of Virology, 2013, 87, 10918-10935.	1.5	116
43	Architecture of respiratory syncytial virus revealed by electron cryotomography. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11133-11138.	3.3	165
44	The Structure of the NTPase That Powers DNA Packaging into Sulfolobus Turreted Icosahedral Virus 2. Journal of Virology, 2013, 87, 8388-8398.	1.5	19
45	Matrix proteins as centralized organizers of negative-sense RNA virionsÂ. Frontiers in Bioscience - Landmark, 2013, 18, 696.	3.0	21
46	Structural Insight into African Horsesickness Virus Infection. Journal of Virology, 2012, 86, 7858-7866.	1.5	39
47	Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea. Journal of Virology, 2012, 86, 5067-5079.	1.5	78
48	Characterization of the Genome, Proteome, and Structure of Yersiniophage ÂR1-37. Journal of Virology, 2012, 86, 12625-12642.	1.5	37
49	Bacteriophage ϕ6 Nucleocapsid Surface Protein 8 Interacts with Virus-Specific Membrane Vesicles Containing Major Envelope Protein 9. Journal of Virology, 2012, 86, 5376-5379.	1.5	11
50	Structure and size determination of bacteriophage P2 and P4 procapsids: Function of size responsiveness mutations. Journal of Structural Biology, 2012, 178, 215-224.	1.3	26
51	Lipid-Containing Viruses: Bacteriophage PRD1 Assembly. Advances in Experimental Medicine and Biology, 2012, 726, 365-377.	0.8	14
52	Structural Analysis of Coxsackievirus A7 Reveals Conformational Changes Associated with Uncoating. Journal of Virology, 2012, 86, 7207-7215.	1.5	41
53	Production and characterization of virus-like particles and the P domain protein of GII.4 norovirus. Journal of Virological Methods, 2012, 179, 1-7.	1.0	38
54	Purification of norovirus-like particles (VLPs) by ion exchange chromatography. Journal of Virological Methods, 2012, 181, 6-11.	1.0	31

#	Article	IF	CITATIONS
55	Cationic Amphiphilic Star and Linear Block Copolymers: Synthesis, Self-Assembly, and in Vitro Gene Transfection. Biomacromolecules, 2011, 12, 3213-3222.	2.6	56
56	The Structure of E.Âcoli IgG-Binding Protein D Suggests a General Model for Bending and Binding in Trimeric Autotransporter Adhesins. Structure, 2011, 19, 1021-1030.	1.6	66
57	Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18085-18090.	3.3	98
58	Lipid body formation during maturation of human mast cells. Journal of Lipid Research, 2011, 52, 2198-2208.	2.0	33
59	Three-Dimensional cryoEM Reconstruction of Native LDL Particles to 16Ã Resolution at Physiological Body Temperature. PLoS ONE, 2011, 6, e18841.	1.1	65
60	Gold-embedded photosensitive liposomes for drug delivery: Triggering mechanism and intracellular release. Journal of Controlled Release, 2010, 147, 136-143.	4.8	140
61	Crystallization and preliminary crystallographic analysis of mouse peroxiredoxin II with significant pseudosymmetry. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 357-360.	0.7	0
62	Familial Relationships in Hyperthermo- and Acidophilic Archaeal Viruses. Journal of Virology, 2010, 84, 4747-4754.	1.5	66
63	Interaction of α _V β ₃ and α _V β ₆ Integrins with Human Parechovirus 1. Journal of Virology, 2010, 84, 8509-8519.	1.5	59
64	Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. Journal of Virology, 2010, 84, 4889-4897.	1.5	124
65	LACTB is a filament-forming protein localized in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18960-18965.	3.3	68
66	Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins. Current Biology, 2009, 19, 95-107.	1.8	273
67	Structure of Chlorosomes from the Green Filamentous Bacterium <i>Chloroflexus aurantiacus</i> . Journal of Bacteriology, 2009, 191, 6701-6708.	1.0	60
68	Characterization of phosphatidylcholine/polyethylene glycolâ€lipid aggregates and their use as coatings and carriers in capillary electrophoresis. Electrophoresis, 2008, 29, 852-862.	1.3	20
69	Structure of the mite-transmitted Blackcurrant reversion nepovirus using electron cryo-microscopy. Virology, 2008, 378, 162-168.	1.1	14
70	Roles of the Minor Capsid Protein P7 in the Assembly and Replication of Double-Stranded RNA Bacteriophage I•6. Journal of Molecular Biology, 2008, 383, 529-538.	2.0	18
71	Insights into Virus Evolution and Membrane Biogenesis from the Structure of the Marine Lipid-Containing Bacteriophage PM2. Molecular Cell, 2008, 31, 749-761.	4.5	116
72	Effect of the Number of Arms on the Association of Amphiphilic Star Block Copolymers. Macromolecules, 2008, 41, 8855-8864.	2.2	44

#	Article	IF	CITATIONS
73	Hexanol-Induced Orderâ^'Disorder Transitions in Lamellar Self-Assembling Aggregates of Bacteriochlorophyll <i>c</i> in <i>Chlorobium tepidum</i> Chlorosomes. Langmuir, 2008, 24, 2035-2041.	1.6	16
74	Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8008-8013.	3.3	78
75	Tale of two spikes in bacteriophage PRD1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6666-6671.	3.3	40
76	Structure of a hexameric RNA packaging motor in a viral polymerase complex. Journal of Structural Biology, 2007, 158, 156-164.	1.3	41
77	X-Ray Scattering and Electron Cryomicroscopy Study on the Effect of Carotenoid Biosynthesis to the Structure of Chlorobium tepidum Chlorosomes. Biophysical Journal, 2007, 93, 620-628.	0.2	28
78	Self-assembling of star-like amphiphilic block copolymers with polyelectrolyte blocks. Effect of pH. Polymer, 2007, 48, 7008-7016.	1.8	31
79	Membrane-containing viruses with icosahedrally symmetric capsids. Current Opinion in Structural Biology, 2007, 17, 229-236.	2.6	34
80	Electron Cryomicroscopy Comparison of the Architectures of the Enveloped Bacteriophages ϕ6 and ϕ8. Structure, 2007, 15, 157-167.	1.6	56
81	Internal Structure of Chlorosomes from Brown-Colored Chlorobium Species and the Role of Carotenoids in Their Assembly. Biophysical Journal, 2006, 91, 1433-1440.	0.2	68
82	Supramolecular assemblies of amphiphilic PMMA-block-PAA starsÂinÂaqueous solutions. Polymer, 2006, 47, 6524-6535.	1.8	40
83	Structure of the Bacteriophage ï•6 Nucleocapsid Suggests a Mechanism for Sequential RNA Packaging. Structure, 2006, 14, 1039-1048.	1.6	108
84	Membrane Proteins Modulate the Bilayer Curvature in the Bacterial Virus Bam35. Structure, 2005, 13, 1819-1828.	1.6	58
85	Classification and three-dimensional reconstruction of unevenly distributed or symmetry mismatched features of icosahedral particles. Journal of Structural Biology, 2005, 150, 332-339.	1.3	34
86	The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes. Nature Structural and Molecular Biology, 2004, 11, 850-856.	3.6	60
87	Insights into assembly from structural analysis of bacteriophage PRD1. Nature, 2004, 432, 68-74.	13.7	246
88	The Structural Basis for RNA Specificity and Ca2+ Inhibition of an RNA-Dependent RNA Polymerase. Structure, 2004, 12, 307-316.	1.6	42
89	The Structural Basis for RNA Specificity and Ca Inhibition of an RNA-Dependent RNA Polymerase. Structure, 2004, 12, 307-316.	1.6	54
90	Lamellar Organization of Pigments in Chlorosomes, the Light Harvesting Complexes of Green Photosynthetic Bacteria. Biophysical Journal, 2004, 87, 1165-1172.	0.2	211

#	Article	IF	CITATIONS
91	The Receptor Binding Protein P2 of PRD1, a Virus Targeting Antibiotic-Resistant Bacteria, Has a Novel Fold Suggesting Multiple Functions. Structure, 2003, 11, 309-322.	1.6	46
92	Conserved Intermediates on the Assembly Pathway of Double-stranded RNA Bacteriophages. Journal of Molecular Biology, 2003, 328, 791-804.	2.0	44
93	Two Distinct Mechanisms Ensure Transcriptional Polarity in Double-Stranded RNA Bacteriophages. Journal of Virology, 2003, 77, 1195-1203.	1.5	21
94	RNA Packaging Device of Double-stranded RNA Bacteriophages, Possibly as Simple as Hexamer of P4 Protein. Journal of Biological Chemistry, 2003, 278, 48084-48091.	1.6	56
95	Minor proteins, mobile arms and membrane–capsid interactions in the bacteriophage PRD1 capsid. Nature Structural Biology, 2002, 9, 756-763.	9.7	80
96	A mechanism for initiating RNA-dependent RNA polymerization. Nature, 2001, 410, 235-240.	13.7	458
97	Combined EM/X-Ray Imaging Yields a Quasi-Atomic Model of the Adenovirus-Related Bacteriophage PRD1 and Shows Key Capsid and Membrane Interactions. Structure, 2001, 9, 917-930.	1.6	69
98	Crystallization and preliminary X-ray crystallographic studies on the bacteriophage Φ6 RNA-dependent RNA polymerase. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1473-1475.	2.5	20
99	Bacteriophage PRD1 Capsid Structure: Iterative Combination of Threedimensional Electron Microscopy and Microanalysis, 2000, 6, 284-285.	0.2	0
100	Crystallization and Preliminary X-Ray Analysis of Receptor-Binding Protein P2 of Bacteriophage PRD1. Journal of Structural Biology, 2000, 131, 159-163.	1.3	14
101	Bacteriophage PRD1 contains a labile receptor-binding structure at each vertex 1 1Edited by A. Klug. Journal of Molecular Biology, 1999, 291, 575-587.	2.0	65
102	Intermediates in the assembly pathway of the double-stranded RNA virus phi 6. EMBO Journal, 1997, 16, 4477-4487.	3.5	152
103	Repeated sequences isolated from Bordetella pertussis induce DNA rearrangements and deletions at high frequency. Gene, 1995, 166, 111-116.	1.0	10
104	Heterologous production of the P1 porin of Neisseria meningitidis in Bacillus subtilis: the effect of an N-terminal extension on the presentation of native-like epitopes. Microbial Pathogenesis, 1995, 18, 365-371.	1.3	13
105	Class-3 porin protein of Neisseria meningitidis: cloning and structure of the gene. Gene, 1991, 105, 125-128.	1.0	36