Kiyohiko Mabuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9860374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thyroid Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies. Radiation Research, 1995, 141, 259.	1.5	952
2	Cancer Incidence in Atomic Bomb Survivors. Part III: Leukemia, Lymphoma and Multiple Myeloma, 1950-1987. Radiation Research, 1994, 137, S68.	1.5	652
3	The Incidence of Leukemia, Lymphoma and Multiple Myeloma among Atomic Bomb Survivors: 1950–2001. Radiation Research, 2013, 179, 361.	1.5	317
4	Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiation Research, 2017, 187, 513-537.	1.5	307
5	Longâ€term trend of thyroid cancer risk among Japanese atomicâ€bomb survivors: 60 years after exposure. International Journal of Cancer, 2013, 132, 1222-1226.	5.1	170
6	Cancer Incidence in Atomic Bomb Survivors. Part I: Use of the Tumor Registries in Hiroshima and Nagasaki for Incidence Studies. Radiation Research, 1994, 137, S1.	1.5	91
7	Lung, Laryngeal and Other Respiratory Cancer Incidence among Japanese Atomic Bomb Survivors: An Updated Analysis from 1958 through 2009. Radiation Research, 2017, 187, 538.	1.5	85
8	Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science, 2021, 372, .	12.6	85
9	Incidence of Breast Cancer in the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiation Research, 2018, 190, 433.	1.5	76
10	Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science, 2021, 372, 725-729.	12.6	60
11	Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. International Journal of Cancer, 2017, 141, 1585-1588.	5.1	53
12	Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. Journal of the National Cancer Institute, 2018, 110, 371-378.	6.3	52
13	Risk of Thyroid Nodules in Residents of Belarus Exposed to Chernobyl Fallout as Children and Adolescents. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2207-2217.	3.6	44
14	Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.	2.5	44
15	Radiation risk of central nervous system tumors in the Life Span Study of atomic bomb survivors, 1958–2009. European Journal of Epidemiology, 2020, 35, 591-600.	5.7	43
16	Radiation-Related Risk of Cancers of the Upper Digestive Tract among Japanese Atomic Bomb Survivors. Radiation Research, 2019, 192, 331.	1.5	37
17	Radiation risk of incident colorectal cancer by anatomical site among atomic bomb survivors: 1958–2009. International Journal of Cancer, 2020, 146, 635-645.	5.1	31
18	Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 2015, 113, 1556-1564	6.4	29

Кіуоніко Мависні

#	Article	IF	CITATIONS
19	Radiation and Risk of Liver, Biliary Tract, and Pancreatic Cancers among Atomic Bomb Survivors in Hiroshima and Nagasaki: 1958–2009. Radiation Research, 2019, 192, 299.	1.5	28
20	Thyroid Cancer and Benign Nodules After Exposure <i>In Utero</i> to Fallout From Chernobyl. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 41-48.	3.6	23
21	Neonatal outcomes following exposure in utero to fallout from Chernobyl. European Journal of Epidemiology, 2017, 32, 1075-1088.	5.7	20
22	Effect of Heterogeneity in Background Incidence on Inference about the Solid-Cancer Radiation Dose Response in Atomic Bomb Survivors. Radiation Research, 2019, 192, 388.	1.5	17
23	Comparative Histopathologic Analysis of "Radiogenic―and "Sporadic―Papillary Thyroid Carcinoma: Patients Born Before and After the Chernobyl Accident. Thyroid, 2018, 28, 880-890.	4.5	16
24	Risk of Thyroid Cancer after Adult Radiation Exposure: Time to Re-Assess?. Radiation Research, 2013, 179, 254-256.	1.5	15
25	Risk of Prostate Cancer Incidence among Atomic Bomb Survivors: 1958–2009. Radiation Research, 2020, 195, 66-76.	1.5	15
26	Field Study of the Possible Effect of Parental Irradiation on the Germline of Children Born to Cleanup Workers and Evacuees of the Chornobyl Nuclear Accident. American Journal of Epidemiology, 2020, 189, 1451-1460.	3.4	12
27	Non-thyroid cancer incidence in Belarusian residents exposed to Chernobyl fallout in childhood and adolescence: Standardized Incidence Ratio analysis, 1997–2011. Environmental Research, 2016, 147, 44-49.	7.5	10
28	Characterization of Genomic Alterations in Radiation-Associated Breast Cancer among Childhood Cancer Survivors, Using Comparative Genomic Hybridization (CGH) Arrays. PLoS ONE, 2015, 10, e0116078.	2.5	10
29	Radiation Risk of Ovarian Cancer in Atomic Bomb Survivors: 1958–2009. Radiation Research, 2020, 195, 60-65.	1.5	10
30	Risk of thyroid cancer in Ukrainian cleanup workers following the Chornobyl accident. European Journal of Epidemiology, 2022, 37, 67-77.	5.7	10
31	Estimation of Radiation Doses for a Case-control Study of Thyroid Cancer Among Ukrainian Chernobyl Cleanup Workers. Health Physics, 2020, 118, 18-35.	0.5	9
32	Estimation of radiation gonadal doses for the American–Ukrainian trio study of parental irradiation in Chornobyl cleanup workers and evacuees and germline mutations in their offspring. Journal of Radiological Protection, 2021, 41, 764-791.	1.1	9
33	Factors associated with serum thyroglobulin in a Ukrainian cohort exposed to iodine-131 from the accident at the Chernobyl Nuclear Plant. Environmental Research, 2017, 156, 801-809.	7.5	8
34	Population Density in Hiroshima and Nagasaki Before the Bombings in 1945: Its Measurement and Impact on Radiation Risk Estimates in the Life Span Study of Atomic Bomb Survivors. American Journal of Epidemiology, 2018, 187, 1623-1629.	3.4	8
35	Thyroid Dose Estimates for a Cohort of Belarusian Persons Exposed in Utero and During Early Life to Chernobyl Fallout. Health Physics, 2020, 118, 170-184.	0.5	8
36	Breast cancer risk in residents of Belarus exposed to Chernobyl fallout while pregnant or lactating: standardized incidence ratio analysis, 1997 to 2016. International Journal of Epidemiology, 2022, 51, 547-554.	1.9	7

Кіуоніко Мависні

#	Article	IF	CITATIONS
37	Age effects on radiation response: summary of a recent symposium and future perspectives. International Journal of Radiation Biology, 2022, 98, 1673-1683.	1.8	7
38	Impact of uncertainties in exposure assessment on thyroid cancer risk among cleanup workers in Ukraine exposed due to the Chornobyl accident. European Journal of Epidemiology, 2022, 37, 837-847.	5.7	6
39	Increased risk of skin cancer in Japanese heterozygotes of xeroderma pigmentosum group A. Journal of Human Genetics, 2018, 63, 1181-1184.	2.3	4
40	Misclassification of primary liver cancer in the Life Span Study of atomic bomb survivors. International Journal of Cancer, 2020, 147, 1294-1299.	5.1	4
41	Utility of gene expression studies in relation to radiation exposure and clinical outcomes: thyroid cancer in the Ukrainian-American cohort and late health effects in a MAYAK worker cohort. International Journal of Radiation Biology, 2021, 97, 12-18.	1.8	4
42	Radiation Risks for the Incidence of Kidney, Bladder and Other Urinary Tract Cancers: 1958–2009. Radiation Research, 2020, 195, 140-148.	1.5	4
43	Reply to the Comments by Mortazavi and Doss on "Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009―(Radiat Res 2017; 187:513–537). Radiation Research, 2017, 188, 37	0-371.	3
44	Incidence of lymphoid neoplasms among atomic bomb survivors by histological subtype, 1950 to 1994. Blood, 2022, 139, 217-227.	1.4	2
45	Association between exposure to radioactive iodine after the Chernobyl accident and thyroid volume in Belarus 10-15 years later. Environmental Health, 2022, 21, 5.	4.0	2
46	Do nuclear power plants increase the risk of thyroid cancer?. Nature Reviews Endocrinology, 2014, 10, 385-387.	9.6	1
47	In MemoriamElaine Ron, Ph.D. (1943–2010). Thyroid, 2011, 21, 567-568.	4.5	0
48	Reply to letter: Thyroid neoplasia after Chernobyl: A comment. International Journal of Cancer, 2019, 144, 2898-2898.	5.1	0
49	Response to the Letter to the Editor by Drs. Walsh and Schneider. Radiation Research, 2020, 194, 101.	1.5	0