
Hisakazu Yamane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9859869/publications.pdf Version: 2024-02-01

HISAKAZII VAMANE

#	Article	IF	CITATIONS
1	Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. Plant Molecular Biology, 2022, 109, 595-609.	3.9	11
2	Sphingadienine-1-phosphate levels are regulated by a novel glycoside hydrolase family 1 glucocerebrosidase widely distributed in seed plants. Journal of Biological Chemistry, 2021, 297, 101236.	3.4	4
3	Direct LC–ESI–MS/MS analysis of plant glucosylceramide and ceramide species with 8 <i>E</i> and 8 <i>Z</i> isomers of the long chain base. Bioscience, Biotechnology and Biochemistry, 2021, 85, 205-210.	1.3	6
4	Involvement of Auxin Biosynthesis and Transport in the Antheridium and Prothalli Formation in Lygodium japonicum. Plants, 2021, 10, 2709.	3.5	4
5	Facile preparation of optically active jasmonates and their biological activities in rice. Bioscience, Biotechnology and Biochemistry, 2019, 83, 876-881.	1.3	7
6	Derivatization for detection of abscisic acid and 12â€oxoâ€phytodienoic acid using matrixâ€assisted laser desorption/ionization imaging mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1565-1572.	1.5	24
7	Characterization of a helminthosporic acid analog that is a selective agonist of gibberellin receptor. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2465-2470.	2.2	8
8	Visualisation of abscisic acid and 12-oxo-phytodienoic acid in immature Phaseolus vulgaris L. seeds using desorption electrospray ionisation-imaging mass spectrometry. Scientific Reports, 2017, 7, 42977.	3.3	33
9	The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genetics, 2016, 12, e1006311.	3.5	81
10	ldentification of rice <i>Allene Oxide Cyclase</i> mutants and the function of jasmonate for defence against <scp><i>Magnaporthe oryzae</i></scp> . Plant Journal, 2013, 74, 226-238.	5.7	204
11	OsJAR1 Contributes Mainly to Biosynthesis of the Stress-Induced Jasmonoyl-Isoleucine Involved in Defense Responses in Rice. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1556-1564.	1.3	59
12	Phytoalexin Accumulation in the Interaction Between Rice and the Blast Fungus. Molecular Plant-Microbe Interactions, 2010, 23, 1000-1011.	2.6	158
13	Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant Journal, 2010, 64, 204-214.	5.7	591
14	Preparation and Biological Activity of Molecular Probes to Identify and Analyze Jasmonic Acid-binding Proteins. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1461-1466.	1.3	33