Nikoletta Szemerédi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9856895/publications.pdf

Version: 2024-02-01

1163117 1125743 25 201 8 13 citations g-index h-index papers 27 27 27 122 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resistance Updates, 2022, 63, 100844.	14.4	29
2	Xanthones Active against Multidrug Resistance and Virulence Mechanisms of Bacteria. Antibiotics, 2021, 10, 600.	3.7	24
3	Ketone- and Cyano-Selenoesters to Overcome Efflux Pump, Quorum-Sensing, and Biofilm-Mediated Resistance. Antibiotics, 2020, 9, 896.	3.7	18
4	Metabolites from Marine-Derived Fungi as Potential Antimicrobial Adjuvants. Marine Drugs, 2021, 19, 475.	4.6	14
5	Antimicrobial, Multidrug Resistance Reversal and Biofilm Formation Inhibitory Effect of Origanum majorana Extracts, Essential Oil and Monoterpenes. Plants, 2022, 11, 1432.	3.5	13
6	Benzoxazole-Based Metal Complexes to Reverse Multidrug Resistance in Bacteria. Antibiotics, 2020, 9, 649.	3.7	11
7	Antimicrobial Activity of a Library of Thioxanthones and Their Potential as Efflux Pump Inhibitors. Pharmaceuticals, 2021, 14, 572.	3.8	11
8	Cyano- and Ketone-Containing Selenoesters as Multi-Target Compounds against Resistant Cancers. Cancers, 2021, 13, 4563.	3.7	11
9	Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected Î ² -Diketone, 8-Hydroxyquinoline and Pyrithione Ligands. Pharmaceuticals, 2021, 14, 518.	3.8	10
10	Exploring the Monoterpene Indole Alkaloid Scaffold for Reversing P-Glycoprotein-Mediated Multidrug Resistance in Cancer. Pharmaceuticals, 2021, 14, 862.	3.8	8
11	Triterpenes from <i>Pholiota populnea</i> as Cytotoxic Agents and Chemosensitizers to Overcome Multidrug Resistance of Cancer Cells. Journal of Natural Products, 2022, 85, 910-916.	3.0	8
12	New diarylpentanoids and chalcones as potential antimicrobial adjuvants. Bioorganic and Medicinal Chemistry Letters, 2022, 67, 128743.	2.2	6
13	BDDE-Inspired Chalcone Derivatives to Fight Bacterial and Fungal Infections. Marine Drugs, 2022, 20, 315.	4.6	6
14	Enantioselectivity of Chiral Derivatives of Xanthones in Virulence Effects of Resistant Bacteria. Pharmaceuticals, 2021, 14, 1141.	3.8	5
15	Application of partially aromatic ortho-quionone-methides for the synthesis of novel naphthoxazines with improved antibacterial activity. European Journal of Medicinal Chemistry, 2022, 237, 114391.	5.5	5
16	Computerâ€Aided Search for 5â€Arylideneimidazolone Anticancer Agents Able To Overcome ABCB1â€Based Multidrug Resistance. ChemMedChem, 2021, 16, 2386-2401.	3.2	4
17	Increased antibacterial properties of indoline-derived phenolic Mannich bases. European Journal of Medicinal Chemistry, 2021, 220, 113459.	5.5	4
18	Antiproliferative Phenanthrenes from Juncus tenuis: Isolation and Diversity-Oriented Semisynthetic Modification. Molecules, 2020, 25, 5983.	3.8	3

#	Article	IF	CITATIONS
19	Ketone-selenoesters as potential anticancer and multidrug resistance modulation agents in 2D and 3D ovarian and breast cancer in vitro models. Scientific Reports, 2022, 12, 6548.	3.3	3
20	Polyoxypregnane Ester Derivatives and Lignans from Euphorbia gossypina var. coccinea Pax Plants, 2022, 11, 1299.	3.5	3
21	Juncaceae Species as Promising Sources of Phenanthrenes: Antiproliferative Compounds from Juncus maritimus Lam. Molecules, 2021, 26, 999.	3.8	2
22	Unique Phenanthrenes from Juncus ensifolius and Their Antiproliferative and Synergistic Effects with the Conventional Anticancer Agent Doxorubicin against Human Cancer Cell Lines. Pharmaceutics, 2022, 14, 608.	4.5	2
23	Discovery of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus </i> In the property of a novel class of small-molecule antibacterial agents against <i>Staphylococcus aureus <i>Staphylococcus aureus <i>Staphylococcus aureus <i>Staphylococcus aureus <i>Staphylococcus <i>Staphylococcus</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.3	1
24	Diversity-Oriented Synthesis Catalyzed by Diethylaminosulfur-Trifluorideâ€"Preparation of New Antitumor Ecdysteroid Derivatives. International Journal of Molecular Sciences, 2022, 23, 3447.	4.1	0
25	<i>Ambrosia artemisiifolia</i> szeszkviterpén-laktonjainak antiproliferatÃv és citoxikus hatásai humán adenokarcinóma és normál sejtvonalakon., 2022,,.		0