
Sovik Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/985488/publications.pdf Version: 2024-02-01

SOVIK DAS

#	Article	IF	CITATIONS
1	Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. Environmental Science and Pollution Research, 2023, 30, 25427-25451.	5.3	7
2	Evaluating application of photosynthetic microbial fuel cell to exhibit efficient carbon sequestration with concomitant value-added product recovery from wastewater: A review. Environmental Science and Pollution Research, 2023, 30, 98995-99012.	5.3	3
3	Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. International Journal of Environmental Science and Technology, 2022, 19, 11539-11560.	3.5	21
4	Application of microbial electrochemical technologies for the treatment of petrochemical wastewater with concomitant valuable recovery: A review. Environmental Science and Pollution Research, 2022, 29, 61783-61802.	5.3	20
5	Electrocoagulation as an efficacious technology for the treatment of wastewater containing active pharmaceutical compounds: a review. Separation Science and Technology, 2022, 57, 1234-1256.	2.5	18
6	Role of bioelectrochemical systems for the remediation of emerging contaminants from wastewater: A review. Journal of Basic Microbiology, 2022, 62, 201-222.	3.3	29
7	Bacterial signalling mechanism: An innovative microbial intervention with multifaceted applications in microbial electrochemical technologies: A review. Bioresource Technology, 2022, 344, 126218.	9.6	26
8	Biofuel cell: existing formats, production level, constraints, and potential uses. , 2022, , 531-550.		1
9	Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. Chemosphere, 2022, 291, 132841.	8.2	24
10	Concomitant bioenergy production and wastewater treatment employing microbial electrochemical technologies. , 2022, , 359-385.		3
11	Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro―and microphytes. Journal of Basic Microbiology, 2022, 62, 260-278.	3.3	25
12	Application of innovative electrochemical and microbial electrochemical technologies for the efficacious removal of emerging contaminants from wastewater: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108230.	6.7	24
13	Application of novel modular reactor for microbial electrosynthesis employing imposed potential with concomitant separation of acetic acid. Sustainable Energy Technologies and Assessments, 2021, 43, 100902.	2.7	7
14	Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	2.0	4
15	Microbial Electrochemical Technologies for CO2 Sequestration. , 2021, , 413-443.		1
16	Performance comparison between batch and continuous mode of operation of microbial electrosynthesis for the production of organic chemicals. Journal of Applied Electrochemistry, 2021, 51, 715-725.	2.9	7
17	Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration. Process Biochemistry, 2021, 101, 237-246.	3.7	37
18	Proficient Sanitary Wastewater Treatment in Laboratory and Field-Scale Microbial Fuel Cell with Anti-Biofouling Cu _{0.5} Mn _{0.5} Fe ₂ O ₄ as Cathode Catalyst. Journal of the Electrochemical Society, 2021, 168, 054519.	2.9	25

SOVIK DAS

#	Article	IF	CITATIONS
19	Preparation of Sulfonated Polytriazoles with a Phosphaphenanthrene Unit via Click Polymerization: Fabrication of Membranes and Properties Thereof. ACS Applied Polymer Materials, 2021, 3, 4127-4138.	4.4	14
20	Proclaiming Electrochemical Oxidation as a Potent Technology for the Treatment of Wastewater Containing Xenobiotic Compounds: A Mini Review. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	2.0	12
21	Removal of caffeine from wastewater using electrochemical advanced oxidation process: A mini review. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100129.	6.1	35
22	High throughput techniques for the rapid identification of electroactive microorganisms. Chemosphere, 2021, 285, 131489.	8.2	17
23	High-Density Polyethylene Waste-Derived Carbon as a Low-Cost Cathode Catalyst in Microbial Fuel Cell. International Journal of Environmental Research, 2021, 15, 1085-1096.	2.3	10
24	A Sustainable Approach for the Production of Green Energy With the Holistic Treatment of Wastewater Through Microbial Electrochemical Technologies: A Review. Frontiers in Sustainability, 2021, 2, .	2.6	8
25	Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell. Environmental Technology (United Kingdom), 2020, 41, 2546-2553.	2.2	30
26	Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Materials Chemistry and Physics, 2020, 239, 122025.	4.0	127
27	Concomitant production of bioelectricity and hydrogen peroxide leading to the holistic treatment of wastewater in microbial fuel cell. Chemical Physics Letters, 2020, 759, 137986.	2.6	17
28	Role of applied potential on microbial electrosynthesis of organic compounds through carbon dioxide sequestration. Journal of Environmental Chemical Engineering, 2020, 8, 104028.	6.7	32
29	Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chemical Physics Letters, 2020, 751, 137536.	2.6	65
30	Chemically Stable Sulfonated Polytriazoles Containing Trifluoromethyl and Phosphine Oxide Moieties for Proton Exchange Membranes. ACS Applied Polymer Materials, 2020, 2, 2967-2979.	4.4	27
31	Ameliorated performance of a microbial fuel cell operated with an alkali pre-treated clayware ceramic membrane. International Journal of Hydrogen Energy, 2020, 45, 16787-16798.	7.1	50
32	Optimal cathodic imposed potential and appropriate catalyst for the synthesis of hydrogen peroxide in microbial electrolysis cell. Chemical Physics Letters, 2020, 754, 137690.	2.6	31
33	The COVID-19 pandemic: biological evolution, treatment options and consequences. Innovative Infrastructure Solutions, 2020, 5, 1.	2.2	14
34	Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell. Ionics, 2020, 26, 3061-3072.	2.4	78
35	Production of Hydrogen Peroxide Using Various Metal-Based Catalysts in Electrochemical and Bioelectrochemical Systems: Mini Review. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	2.0	45
36	Performance Evaluation of Microbial Fuel Cell Operated with Pd or MnO ₂ as Cathode Catalyst and <i>Chaetoceros</i> Pretreated Anodic Inoculum. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	2.0	41

SOVIK DAS

#	Article	IF	CITATIONS
37	Review—Microbial Electrosynthesis: A Way Towards The Production of Electro-Commodities Through Carbon Sequestration with Microbes as Biocatalysts. Journal of the Electrochemical Society, 2020, 167, 155510.	2.9	57
38	Integration of bioelectrochemical systems with other existing wastewater treatment processes. , 2020, , 229-248.		7
39	Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell. International Journal of Hydrogen Energy, 2019, 44, 22218-22222.	7.1	44
40	Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor. Journal of the Institution of Engineers (India): Series A, 2019, 100, 675-682.	1.2	32
41	Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review. Materials Science for Energy Technologies, 2019, 2, 687-696.	1.8	51
42	Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell. Bioresource Technology, 2019, 294, 122138.	9.6	81
43	Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4. Electrochimica Acta, 2019, 310, 173-183.	5.2	58
44	Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis. Water Science and Technology, 2018, 77, 1293-1302.	2.5	43