
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/985363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of non-spherical polymer particles using the activated swelling method. Journal of Colloid and Interface Science, 2022, 611, 377-389.	5.0	17
2	The role of hydrodynamic interactions on the aggregation kinetics of sedimenting colloidal particles. Soft Matter, 2022, 18, 1715-1730.	1.2	12
3	Silica–Resorcinol–Melamine–Formaldehyde Composite Aerogels as High-Performance Thermal Insulators. ACS Omega, 2022, 7, 14478-14489.	1.6	4
4	Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Carbohydrate Polymers, 2022, 292, 119675.	5.1	14
5	Shear Stressâ€Responsive Polymersome Nanoreactors Inspired by the Marine Bioluminescence of Dinoflagellates. Angewandte Chemie, 2021, 133, 917-922.	1.6	7
6	Shear Stressâ€Responsive Polymersome Nanoreactors Inspired by the Marine Bioluminescence of Dinoflagellates. Angewandte Chemie - International Edition, 2021, 60, 904-909.	7.2	29
7	Solvothermal Synthesis Combined with Design of Experiments—Optimization Approach for Magnetite Nanocrystal Clusters. Nanomaterials, 2021, 11, 360.	1.9	14
8	Brownian Dynamics Simulations of Cavitation-Induced Polymer Chain Scission. Industrial & Engineering Chemistry Research, 2021, 60, 10539-10550.	1.8	2
9	Multiresponsive Photonic Microspheres Formed by Hierarchical Assembly of Colloidal Nanogels for Colorimetric Sensors. ACS Applied Nano Materials, 2021, 4, 3389-3396.	2.4	25
10	Experimental and Theoretical Validation of Plasmonic Nanoparticle Heat Generation by Using Lock-In Thermography. Journal of Physical Chemistry C, 2021, 125, 5890-5896.	1.5	4
11	A Generalized Approach for Evaluating the Mechanical Properties of Polymer Nanocomposites Reinforced with Spherical Fillers. Nanomaterials, 2021, 11, 830.	1.9	15
12	Ureido Functionalization through Amine-Urea Transamidation under Mild Reaction Conditions. Polymers, 2021, 13, 1583.	2.0	4
13	Aerogel Springâ€Back Correlates with Strain Recovery: Effect of Silica Concentration and Aging. Advanced Engineering Materials, 2021, 23, 2100376.	1.6	13
14	Dense and strong, but superinsulating silica aerogel. Acta Materialia, 2021, 213, 116959.	3.8	42
15	Preparation and Machine-Learning Methods of Nacre-like Composites from the Self-Assembly of Magnetic Colloids Exposed to Rotating Magnetic Fields. ACS Applied Materials & Interfaces, 2021, 13, 48040-48052.	4.0	7
16	Modeling ultrasound-induced molecular weight decrease of polymers with multiple scissile azo-mechanophores. Polymer Chemistry, 2021, 12, 4093-4103.	1.9	8
17	Simple and fast evaluation of relaxation parameters of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 499, 166176.	1.0	13
18	Holistic View on Cell Survival and DNA Damage: How Model-Based Data Analysis Supports Exploration of Dynamics in Biological Systems. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-11.	0.7	2

#	Article	IF	CITATIONS
19	Characterization of the Shape Anisotropy of Superparamagnetic Iron Oxide Nanoparticles during Thermal Decomposition. Materials, 2020, 13, 2018.	1.3	7
20	One‣tep Ring Opening Metathesis Block‣ike Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angewandte Chemie - International Edition, 2020, 59, 13597-13601.	7.2	15
21	Monolithic resorcinol–formaldehyde alcogels and their corresponding nitrogen-doped activated carbons. Journal of Sol-Gel Science and Technology, 2020, 95, 719-732.	1.1	11
22	Strong, Machinable, and Insulating Chitosan–Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS Applied Materials & Interfaces, 2020, 12, 22037-22049.	4.0	71
23	One‣tep Ring Opening Metathesis Blockâ€Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angewandte Chemie, 2020, 132, 13699-13703.	1.6	2
24	Phase Transformation of Superparamagnetic Iron Oxide Nanoparticles via Thermal Annealing: Implications for Hyperthermia Applications. ACS Applied Nano Materials, 2019, 2, 4462-4470.	2.4	20
25	Nanoparticle administration method in cell culture alters particle-cell interaction. Scientific Reports, 2019, 9, 900.	1.6	65
26	Dynamic DNA Damage and Repair Modeling: Bridging the Gap Between Experimental Damage Readout and Model Structure. Communications in Computer and Information Science, 2019, , 127-137.	0.4	1
27	Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. Nanoscience and Technology, 2019, , 101-150.	1.5	8
28	Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: An X-ray tomography study. Microporous and Mesoporous Materials, 2019, 278, 289-296.	2.2	29
29	Modeling analysis of ultrasonic attenuation and angular scattering measurements of suspended particles. Journal of the Acoustical Society of America, 2018, 143, 1049-1063.	0.5	1
30	Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers. Acta Materialia, 2018, 147, 322-328.	3.8	28
31	Metallocene as Mechanophore in Polymers Leads to Metal Ion Release & Oxidation. Chimia, 2018, 72, 902.	0.3	2
32	Protein Amyloid Fibrils as Template for the Synthesis of Silica Nanofibers, and Their Use to Prepare Superhydrophobic, Lotus‣ike Surfaces. Small, 2018, 14, e1802854.	5.2	18
33	Bioinspired Stimuliâ€Responsive Colorâ€Changing Systems. Advanced Materials, 2018, 30, e1707069.	11.1	246
34	Triggered Metal Ion Release and Oxidation: Ferrocene as a Mechanophore in Polymers. Angewandte Chemie - International Edition, 2018, 57, 11445-11450.	7.2	100
35	Getriggerte Freisetzung und Oxidation von Metallionen: Ferrocen als neuer Mechanophor in Polymeren. Angewandte Chemie, 2018, 130, 11616-11621.	1.6	20
36	Reinterpretation of the mechanical reinforcement of polymer nanocomposites reinforced with cellulose nanorods. Journal of Applied Polymer Science, 2017, 134, 45254.	1.3	23

#	Article	IF	CITATIONS
37	Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 2017, 241, 293-302.	2.2	111
38	Cellular Shuttles: Monocytes/Macrophages Exhibit Transendothelial Transport of Nanoparticles under Physiological Flow. ACS Applied Materials & Interfaces, 2017, 9, 18501-18511.	4.0	33
39	Growth and Aggregation Regulate Clusters Structural Properties and Gel Time. Journal of Physical Chemistry B, 2017, 121, 2511-2524.	1.2	10
40	Polymer nanocomposites with nanorods having different length distributions. Polymer, 2017, 110, 284-291.	1.8	39
41	Structural Behavior of Cylindrical Polystyreneâ€ <i>block</i> â€Poly(ethyleneâ€butylene)â€ <i>block</i> â€Polystyrene (SEBS) Triblock Copolymer Containing MWCNTs: On the Influence of Nanoparticle Surface Modification. Macromolecular Chemistry and Physics. 2017. 218. 1700231.	1.1	11
42	Removal of Cells from Body Fluids by Magnetic Separation in Batch and Continuous Mode: Influence of Bead Size, Concentration, and Contact Time. ACS Applied Materials & amp; Interfaces, 2017, 9, 29571-29579.	4.0	31
43	Measuring the heating power of magnetic nanoparticles: an overview of currently used methods. Materials Today: Proceedings, 2017, 4, S107-S117.	0.9	15
44	Lock-In Thermography as an Analytical Tool for Magnetic Nanoparticles: Measuring Heating Power and Magnetic Fields. Journal of Physical Chemistry C, 2017, 121, 27164-27175.	1.5	15
45	Rheological characterization of nanostructured material based on Polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS) block copolymer: Effect of block copolymer composition and nanoparticle geometry. Composites Science and Technology, 2017, 149, 192-206.	3.8	15
46	Modeling of the Degradation of Poly(ethylene glycol)- <i>co</i> -(lactic acid)-dimethacrylate Hydrogels. Macromolecules, 2017, 50, 5527-5538.	2.2	7
47	Tracking of Fluorescently Labeled Polymer Particles Reveals Surface Effects during Shear-Controlled Aggregation. Langmuir, 2017, 33, 14038-14044.	1.6	8
48	Single-Component Upconverting Polymeric Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 826-832.	2.0	12
49	Universal Breakup of Colloidal Clusters in Simple Shear Flow. Journal of Physical Chemistry B, 2016, 120, 7244-7252.	1.2	20
50	Population-balance description of shear-induced clustering, gelation and suspension viscosity in sheared DLVO colloids. Soft Matter, 2016, 12, 5313-5324.	1.2	18
51	Protein adsorption on ion exchange resins and monoclonal antibody charge variant modulation. Journal of Chromatography A, 2016, 1447, 82-91.	1.8	43
52	Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions. Journal of Physical Chemistry B, 2016, 120, 3267-3280.	1.2	40
53	The Role of Mass and Length in the Sonochemistry of Polymers. Macromolecules, 2016, 49, 1630-1636.	2.2	64
54	Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, 2015, 44, 6287-6305.	18.7	771

#	Article	IF	CITATIONS
55	Influence of the Potential Well on the Breakage Rate of Colloidal Aggregates in Simple Shear and Uniaxial Extensional Flows. Langmuir, 2015, 31, 5712-5721.	1.6	16
56	Janus Particles. , 2015, , 1-12.		0
57	Janus Particles. , 2015, , 1027-1037.		Ο
58	Impact of aggregate formation on the viscosity of protein solutions. Soft Matter, 2015, 11, 5513-5522.	1.2	69
59	Template-Assisted Synthesis of Janus Silica Nanobowls. Langmuir, 2015, 31, 4635-4643.	1.6	25
60	Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation. Physical Chemistry Chemical Physics, 2015, 17, 24392-24402.	1.3	20
61	Magnetoliposomes: opportunities and challenges. European Journal of Nanomedicine, 2014, 6, .	0.6	48
62	Synthesis of Hetero-nanoclusters: The Case of Polymer–Magnetite Systems. Langmuir, 2014, 30, 2266-2273.	1.6	9
63	Analytical Model of Fractal Aggregate Stability and Restructuring in Shear Flows. Industrial & Engineering Chemistry Research, 2014, 53, 9109-9119.	1.8	24
64	Insertion of Nanoparticle Clusters into Vesicle Bilayers. ACS Nano, 2014, 8, 3451-3460.	7.3	82
65	Retarded hydrodynamic properties of fractal clusters. Journal of Colloid and Interface Science, 2014, 429, 8-16.	5.0	2
66	Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. Journal of Chromatography A, 2014, 1334, 92-100.	1.8	44
67	Kinetics of Free-Radical Cross-Linking Polymerization: Comparative Experimental and Numerical Study. Macromolecules, 2013, 46, 5831-5841.	2.2	22
68	Flow-Induced Aggregation and Breakup of Particle Clusters Controlled by Surface Nanoroughness. Langmuir, 2013, 29, 14386-14395.	1.6	24
69	Electrostatics Controls the Formation of Amyloid Superstructures in Protein Aggregation. Physical Review Letters, 2013, 111, 108105.	2.9	49
70	Dependence of fractal dimension of DLCA clusters on size of primary particles. Advances in Colloid and Interface Science, 2013, 195-196, 41-49.	7.0	43
71	Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness. Biotechnology and Bioengineering, 2013, 110, 1508-1519.	1.7	26
72	Asymmetrically Functionalized Polymeric Dumbbells. Chimia, 2013, 67, 829-829.	0.3	2

#	Article	IF	CITATIONS
73	Population Balance Modeling of Antibodies Aggregation Kinetics. Journal of Physical Chemistry B, 2012, 116, 7066-7075.	1.2	84
74	Fabrication of Anisotropic Porous Silica Monoliths by Means of Magnetically Controlled Phase Separation in Sol–Gel Processes. Langmuir, 2012, 28, 12655-12662.	1.6	15
75	Predictive Model for Diffusion-Limited Aggregation Kinetics of Nanocolloids under High Concentration. Journal of Physical Chemistry B, 2012, 116, 120-129.	1.2	34
76	Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography. Journal of Chromatography A, 2012, 1253, 32-43.	1.8	52
77	Controlled PEGylation of PLAâ€Based Nanoparticles. Macromolecular Chemistry and Physics, 2012, 213, 2012-2018.	1.1	25
78	Macromol. Chem. Phys. 19/2012. Macromolecular Chemistry and Physics, 2012, 213, 2011-2011.	1.1	0
79	PLAâ€based nanoparticles with tunable hydrophobicity and degradation kinetics. Journal of Polymer Science Part A, 2012, 50, 5191-5200.	2.5	36
80	Breakage Rate of Colloidal Aggregates in Shear Flow through Stokesian Dynamics. Langmuir, 2012, 28, 283-292.	1.6	62
81	Viscosity contribution of an arbitrary shape rigid aggregate to a dilute suspension. Journal of Colloid and Interface Science, 2012, 367, 83-91.	5.0	7
82	Experimental and Modeling Study of Breakage and Restructuring of Open and Dense Colloidal Aggregates. Langmuir, 2011, 27, 5739-5752.	1.6	77
83	Effect of Primary Particle Size and Salt Concentration on the Structure of Colloidal Gels. Journal of Physical Chemistry C, 2011, 115, 931-936.	1.5	8
84	Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011, 6, 286-308.	6.2	484
85	Effect of repulsive interactions on the rate of doublet formation of colloidal nanoparticles in the presence of convective transport. Journal of Colloid and Interface Science, 2011, 355, 42-53.	5.0	11
86	Field-controlled Self-assembly and Disassembly of Colloidal Nanoparticles. Chimia, 2011, 65, 792-798.	0.3	4
87	Effect of Temperature on High Shear-Induced Gelation of Charge-Stabilized Colloids without Adding Electrolytes. Langmuir, 2010, 26, 2761-2768.	1.6	32
88	Hydrodynamic properties of rigid fractal aggregates of arbitrary morphology. Journal of Colloid and Interface Science, 2010, 352, 87-98.	5.0	43
89	Preparation of biocompatible magnetite–PLGA composite nanoparticles using supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2010, 54, 348-356.	1.6	58
90	Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A. Journal of Chromatography A, 2010, 1217, 5610-5621.	1.8	49

#	Article	IF	CITATIONS
91	Application of Asymmetric Flow-Field Flow Fractionation to the Characterization of Colloidal Dispersions Undergoing Aggregation. Langmuir, 2010, 26, 7062-7071.	1.6	7
92	Magnetic gelation: a new method for the preparation of polymeric anisotropic porous materials. Soft Matter, 2010, 6, 5636.	1.2	19
93	Breakup of dense colloidal aggregates under hydrodynamic stresses. Physical Review E, 2009, 79, 061401.	0.8	92
94	High Shear-Induced Gelation of Charge-Stabilized Colloids in a Microchannel without Adding Electrolytes. Langmuir, 2009, 25, 4715-4723.	1.6	27
95	Role of Counterion Association in Colloidal Stability. Langmuir, 2009, 25, 2696-2702.	1.6	55
96	Generation and Geometrical Analysis of Dense Clusters with Variable Fractal Dimension. Journal of Physical Chemistry B, 2009, 113, 10587-10599.	1.2	75
97	Interpretation of Light Scattering and Turbidity Measurements in Aggregated Systems: Effect of Intra-Cluster Multiple-Light Scattering. Journal of Physical Chemistry B, 2009, 113, 14962-14970.	1.2	35
98	Scattering Properties of Dense Clusters of Colloidal Nanoparticles. Journal of Physical Chemistry B, 2009, 113, 5938-5950.	1.2	17
99	Novel Anisotropic Porous Materials through Self-Assembly of Super-Paramagnetic Particles. Chimia, 2009, 63, 78.	0.3	1
100	Mechanically stirred singleâ€ s tage column for continuous gelation of colloidal systems. AICHE Journal, 2008, 54, 3106-3115.	1.8	1
101	Correlation between Colloidal Stability and Surfactant Adsorption/Association Phenomena Studied by Light Scattering. Journal of Physical Chemistry B, 2008, 112, 1976-1986.	1.2	50
102	Charged Molecular Films on Brownian Particles: Structure, Interactions, and Relation to Stability. Journal of Physical Chemistry B, 2008, 112, 6793-6802.	1.2	25
103	Reversible Clustering of pH- and Temperature-Responsive Janus Magnetic Nanoparticles. ACS Nano, 2008, 2, 1799-1806.	7.3	142
104	Rheological Properties and Structure of Gels Generated from Stable Polymer Colloids through High Shear in a MicroChannel. AIP Conference Proceedings, 2008, , .	0.3	0
105	Theoretical elastic moduli for disordered packings of interconnected spheres. Journal of Chemical Physics, 2007, 127, 174512.	1.2	13
106	Preparation and Controlled Self-Assembly of Janus Magnetic Nanoparticles. Journal of the American Chemical Society, 2007, 129, 12878-12889.	6.6	194
107	Functionalization of Monodisperse Magnetic Nanoparticles. Langmuir, 2007, 23, 2158-2168.	1.6	430
108	Detailed Model of the Aggregation Event between Two Fractal Clusters. Journal of Physical Chemistry B, 2006, 110, 6574-6586.	1.2	26

#	Article	IF	CITATIONS
109	Further insights into the universality of colloidal aggregation. Advances in Colloid and Interface Science, 2005, 113, 65-83.	7.0	83
110	Scattering Structure Factor of Colloidal Gels Characterized by Static Light Scattering, Small-Angle Light Scattering, and Small-Angle Neutron Scattering Measurements. Langmuir, 2005, 21, 3291-3295.	1.6	38
111	Modelling of aggregation kinetics of colloidal systems and its validation by light scattering measurements. Chemical Engineering Science, 2004, 59, 1783-1798.	1.9	62
112	Radial density distribution of fractal clusters. Chemical Engineering Science, 2004, 59, 4401-4413.	1.9	25
113	Experimental Investigation of Colloidal Gel Structures. Langmuir, 2004, 20, 4355-4362.	1.6	26
114	Rotational Diffusivity of Fractal Clusters. Langmuir, 2004, 20, 5630-5636.	1.6	13
115	Kinetic modeling of aggregation and gel formation in quiescent dispersions of polymer colloids. Macromolecular Symposia, 2004, 206, 307-320.	0.4	10
116	Role of Sedimentation and Buoyancy on the Kinetics of Diffusion Limited Colloidal Aggregation. Langmuir, 2003, 19, 10710-10718.	1.6	41
117	A simple model for the structure of fractal aggregates. Journal of Colloid and Interface Science, 2003, 268, 106-120.	5.0	153
118	Modeling structure effects on aggregation kinetics in colloidal dispersions. AICHE Journal, 2003, 49, 1542-1555.	1.8	49
119	Hydrodynamic radius of fractal clusters. Journal of Colloid and Interface Science, 2003, 268, 96-105.	5.0	107
120	Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Advances in Colloid and Interface Science, 2003, 103, 33-56.	7.0	101
121	Estimation of Fractal Dimension in Colloidal Gels. Langmuir, 2003, 19, 6312-6316.	1.6	55
122	Estimation of fractal dimension of colloidal gels in the presence of multiple scattering. Physical Review E, 2001, 64, 061404.	0.8	26