Andrew C Kemp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9852627/publications.pdf Version: 2024-02-01

ANDDEW C KEMD

#	Article	IF	CITATIONS
1	Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11017-11022.	7.1	376
2	Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1434-41.	7.1	334
3	Sea-level change during the last 2500 years in New Jersey, USA. Quaternary Science Reviews, 2013, 81, 90-104.	3.0	84
4	Relative sea-level change in Connecticut (USA) during the last 2200 yrs. Earth and Planetary Science Letters, 2015, 428, 217-229.	4.4	70
5	Relative sea-level change in Newfoundland, Canada during the past â^1⁄43000 years. Quaternary Science Reviews, 2018, 201, 89-110.	3.0	54
6	Modeling sea-level change using errors-in-variables integrated Gaussian processes. Annals of Applied Statistics, 2015, 9, .	1.1	52
7	Influence of tidalâ€range change and sediment compaction on Holocene relative seaâ€level change in New Jersey, USA. Journal of Quaternary Science, 2013, 28, 403-411.	2.1	45
8	Application of stable carbon isotopes for reconstructing saltâ€marsh floral zones and relative sea level, New Jersey, USA. Journal of Quaternary Science, 2012, 27, 404-414.	2.1	43
9	Contribution of relative seaâ€level rise to historical hurricane flooding in New York City. Journal of Quaternary Science, 2013, 28, 537-541.	2.1	42
10	Quantifying the Contribution of Sediment Compaction to late Holocene Salt-Marsh Sea-Level Reconstructions, North Carolina, USA. Quaternary Research, 2015, 83, 41-51.	1.7	42
11	Use of lead isotopes for developing chronologies in recent salt-marsh sediments. Quaternary Geochronology, 2012, 12, 40-49.	1.4	41
12	Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast. Marine Geology, 2014, 357, 90-100.	2.1	41
13	Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida. Marine Geology, 2017, 390, 254-269.	2.1	39
14	Extended late Holocene relative sea-level histories for North Carolina, USA. Quaternary Science Reviews, 2017, 160, 13-30.	3.0	37
15	Upslope development of a tidal marsh as a function of upland land use. Global Change Biology, 2017, 23, 755-766.	9.5	37
16	Relative sea-level trends in New York City during the past 1500 years. Holocene, 2017, 27, 1169-1186.	1.7	36
17	Reconstructing Holocene sea level using saltâ€marsh foraminifera and transfer functions: lessons from New Jersey, USA. Journal of Quaternary Science, 2013, 28, 617-629.	2.1	34
18	Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions. Quaternary Science Reviews, 2017, 167, 96-111.	3.0	31

ANDREW C KEMP

#	Article	IF	CITATIONS
19	Paleo Constraints on Future Sea-Level Rise. Current Climate Change Reports, 2015, 1, 205-215.	8.6	22
20	Organic pollutants, heavy metals and toxicity in oil spill impacted salt marsh sediment cores, Staten Island, New York City, USA. Marine Pollution Bulletin, 2020, 151, 110721.	5.0	21
21	Two millennia of sea level data: The key to predicting change. Eos, 2011, 92, 289-290.	0.1	20
22	Utility of salt-marsh foraminifera, testate amoebae and bulk-sediment δ13C values as sea-level indicators in Newfoundland, Canada. Marine Micropaleontology, 2017, 130, 43-59.	1.2	20
23	The distribution and utility of seaâ€level indicators in Eurasian subâ€Arctic salt marshes (White Sea,) Tj ETQq1 1	0.784314 2.4	rgBT /Overlo
24	Enough is Enough, or More is More? Testing the Influence of Foraminiferal Count Size on Reconstructions of Paleo-Marsh Elevation. Journal of Foraminiferal Research, 2020, 50, 266-278.	0.5	18
25	Fecal steroids as a potential tool for conservation paleobiology in East Africa. Biodiversity and Conservation, 2022, 31, 183-209.	2.6	6
26	The importance of non-tidal water-level variability for reconstructing Holocene relative sea level. Quaternary Science Reviews, 2022, 290, 107637.	3.0	3
27	Salt Marsh Migration into Lawns Revealed by a Novel Sediment-Based Approach. Estuaries and Coasts, 2019, 42, 1419-1429.	2.2	2