Kai-Di Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9852541/publications.pdf

Version: 2024-02-01

		933447	1125743	
13	343	10	13	
papers	citations	h-index	g-index	
10	10	1.0	224	
13	13	13	234	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal, 2021, 19, 285-299.	8.3	52
2	The apple U-box E3 ubiquitin ligase MdPUB29 contributes to activate plant immune response to the fungal pathogen Botryosphaeria dothidea. Planta, 2019, 249, 1177-1188.	3.2	41
3	Apple ethylene response factor MdERF11 confers resistance to fungal pathogen Botryosphaeria dothidea. Plant Science, 2020, 291, 110351.	3.6	40
4	The basic helix-loop-helix transcription factor MdbHLH3 modulates leaf senescence in apple via the regulation of dehydratase-enolase-phosphatase complex 1. Horticulture Research, 2020, 7, 50.	6.3	39
5	BTB-TAZ Domain Protein MdBT2 Modulates Malate Accumulation and Vacuolar Acidification in Response to Nitrate. Plant Physiology, 2020, 183, 750-764.	4.8	33
6	R2R3-MYB Transcription Factor MdMYB73 Confers Increased Resistance to the Fungal Pathogen <i>Botryosphaeria dothidea</i> in Apples <i>via</i> the Salicylic Acid Pathway. Journal of Agricultural and Food Chemistry, 2021, 69, 447-458.	5.2	29
7	The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. Horticulture Research, 2018, 5, 52.	6.3	27
8	BTB-BACK-TAZ domain protein MdBT2-mediated MdMYB73 ubiquitination negatively regulates malate accumulation and vacuolar acidification in apple. Horticulture Research, 2020, 7, 151.	6.3	25
9	MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. Journal of Integrative Plant Biology, 2022, 64, 884-900.	8.5	21
10	A basic/helix–loop–helix transcription factor controls leaf shape by regulating auxin signaling in apple. New Phytologist, 2020, 228, 1897-1913.	7.3	16
11	Glucose sensor <scp>MdHXK1</scp> activates an immune response to the fungal pathogen <i>Botryosphaeria dothidea</i> in apple. Physiologia Plantarum, 2022, 174, e13596.	5.2	9
12	New insights into the role of MADS-box transcription factor gene CmANR1 on root and shoot development in chrysanthemum (Chrysanthemum morifolium). BMC Plant Biology, 2021, 21, 79.	3.6	6
13	Apple receptor-like kinase FERONIA regulates salt tolerance and ABA sensitivity in Malus domestica. Journal of Plant Physiology, 2022, 270, 153616.	3 . 5	5