Weining Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/985252/publications.pdf Version: 2024-02-01

10.0

69

#	Article	IF	CITATIONS
1	Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 2016, 50, 2328-2336.	10.0	344
2	Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano, 2019, 6, 41-59.	4.3	330
3	Behavior of Decabromodiphenyl Ether (BDE-209) in the Soilâ^Plant System: Uptake, Translocation, and Metabolism in Plants and Dissipation in Soil. Environmental Science & Technology, 2010, 44, 663-667.	10.0	180
4	Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environmental Science: Nano, 2015, 2, 68-77.	4.3	178
5	Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresource Technology, 2015, 192, 83-89.	9.6	166
6	The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environmental Pollution, 2016, 216, 682-688.	7.5	131
7	Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites. Environmental Pollution, 2011, 159, 238-243.	7.5	128
8	Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China. Environmental Pollution, 2016, 214, 349-353.	7.5	116
9	An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?. Limnology and Oceanography: Methods, 2020, 18, 235-258.	2.0	109
10	Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant and Soil, 2006, 289, 355-368.	3.7	108
11	Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (<i>Triticum) Tj ETQq1 1 0.7</i>	′84314 rg 10.0	BT /Qverloci
12	Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays) Tj ETQq0 0	0 ₃ rgBT /O	verlock 10 T
13	Cellular internalization and intracellular biotransformation of silver nanoparticles in <i>Chlamydomonas reinhardtii</i> . Nanotoxicology, 2016, 10, 1129-1135.	3.0	74
	Pathway for the Production of Hydroxyl Padicals during the Microbially Mediated Padex		

14	radiway for the Froduction of Hydroxyr Radicals during the Microbially Mediated Redox	
14	Transformation of Iron (Ourbudy) ouidas Environmental Science Ramni Tachnology 2020 E4 002 010	
	Transformation of from (Oxynyur)oxides. Environmental Science & amp, rechnology, 2020, 54, 902-910.	

Uptake, Translocation, and Metabolism of 8:2 Fluorotelomer Alcohol in Soybean (<i>Slycine max</i>L.) Tj ETQq1 1.0.784314 rgBT /Ov

16	Relationship between Molecular Components and Reducing Capacities of Humic Substances. ACS Earth and Space Chemistry, 2018, 2, 330-339.	2.7	55
17	Solid-phase extraction-stepwise elution (SPE-SE) procedure for isolation of dissolved organic matter prior to ESI-FT-ICR-MS analysis. Analytica Chimica Acta, 2016, 948, 55-61.	5.4	53

18Sustained production of superoxide radicals by manganese oxides under ambient dark conditions.
Water Research, 2021, 196, 117034.11.343

WEINING WAN

#	Article	IF	CITATIONS
19	Comparing electron donating/accepting capacities (EDC/EAC) between crop residue-derived dissolved black carbon and standard humic substances. Science of the Total Environment, 2019, 673, 29-35.	8.0	42
20	Diastereomer-Specific Uptake, Translocation, and Toxicity of Hexabromocyclododecane Diastereoisomers to Maize. Journal of Agricultural and Food Chemistry, 2012, 60, 8528-8534.	5.2	40
21	Molecular transformation of natural and anthropogenic dissolved organic matter under photo-irradiation in the presence of nano TiO2. Water Research, 2017, 125, 201-208.	11.3	37
22	Determination of perfluoroalkyl acid isomers in biosolids, biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1072, 25-33.	2.3	34
23	Behavior of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in biosolids amended soil-plant microcosms of seven plant species: Accumulation and degradation. Science of the Total Environment, 2018, 642, 366-373.	8.0	31
24	Iron plays an important role in molecular fractionation of dissolved organic matter at soil-water interface. Science of the Total Environment, 2019, 670, 300-307.	8.0	30
25	Effects of Low Molecular Weight Organic Anions on the Release of Arsenite and Arsenate from a Contaminated Soil. Water, Air, and Soil Pollution, 2005, 167, 111-122.	2.4	27
26	Facet-Mediated Adsorption and Molecular Fractionation of Humic Substances on Hematite Surfaces. Environmental Science & Technology, 2018, 52, 11660-11669.	10.0	27
27	Interfacial Molecular Fractionation on Ferrihydrite Reduces the Photochemical Reactivity of Dissolved Organic Matter. Environmental Science & Technology, 2021, 55, 1769-1778.	10.0	26
28	Insights into the attenuated sorption of organic compounds on black carbon aged in soil. Environmental Pollution, 2017, 231, 1469-1476.	7.5	25
29	Influences of lignin from paper mill sludge on soil properties and metal accumulation in wheat. Biology and Fertility of Soils, 2004, 40, 237.	4.3	24
30	Experimental and Theoretical Evidence for Diastereomer- and Enantiomer-Specific Accumulation and Biotransformation of HBCD in Maize Roots. Environmental Science & Technology, 2016, 50, 12205-12213.	10.0	23
31	Molecular-scale investigation of soil fulvic acid and water-extractable organic matter by high-resolution mass spectrometry and 1H NMR spectroscopy. Environmental Chemistry, 2019, 16, 92.	1.5	23
32	Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (ZeaÂmays L.). Environmental Pollution, 2016, 208, 714-722.	7.5	22
33	Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry. Journal of Environmental Sciences, 2020, 98, 22-30.	6.1	22
34	Determination of fluorotelomer alcohols and their degradation products in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2015, 1404, 72-80.	3.7	21
35	Simultaneous determination of brominated phenols in soils. Journal of Environmental Sciences, 2013, 25, 2306-2312.	6.1	20
36	Accumulation and phytotoxicity of technical hexabromocyclododecane in maize. Journal of Environmental Sciences, 2016, 42, 97-104.	6.1	20

WEINING WAN

#	Article	IF	CITATIONS
37	Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China: occurrence, diastereomer- and enantiomer-specific profiles, and metabolization. Environmental Science and Pollution Research, 2017, 24, 21625-21635.	5.3	19
38	Analysis of hydroxylated polybrominated diphenyl ethers in plant samples using ultra performance liquid chromatography-mass spectrometry. Science China Chemistry, 2011, 54, 1782-1788.	8.2	18
39	Uptake of Arsenic by Maize Inoculated with Three Different Arbuscular Mycorrhizal Fungi. Communications in Soil Science and Plant Analysis, 2010, 41, 735-743.	1.4	17
40	Selected dark sides of biomass-derived biochars as environmental amendments. Journal of Environmental Sciences, 2017, 54, 13-20.	6.1	17
41	Effects of Oxalate and Humic Acid on Arsenate Sorption by and Desorption from a Chinese Red Soil. Water, Air, and Soil Pollution, 2006, 176, 269-283.	2.4	16
42	Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation. Water Research, 2021, 195, 116988.	11.3	16
43	Preconcentration and Determination of Trace Metals in Seawater Using a Thiol Cotton Fiber Minicolumn Coupled with Inductively Coupled Plasma Mass Spectrometry. Analytical Sciences, 2005, 21, 651-654.	1.6	15
44	Diastereoisomer-specific neurotoxicity of hexabromocyclododecane in human SH-SY5Y neuroblastoma cells. Science of the Total Environment, 2019, 686, 893-902.	8.0	15
45	Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies. Science of the Total Environment, 2019, 656, 364-372.	8.0	15
46	Applications of synchrotron-based X-ray techniques in environmental science. Science China Chemistry, 2010, 53, 2529-2538.	8.2	13
47	Influences of artificial root exudate components on the behaviors of BDE-28 and BDE-47 in soils: desorption, availability, and biodegradation. Environmental Science and Pollution Research, 2016, 23, 7702-7711.	5.3	12
48	Biotransformation of 6:2 fluorotelomer alcohol by the whole soybean (Glycine max L. Merrill) seedlings. Environmental Pollution, 2020, 257, 113513.	7.5	12
49	A Novel Strategy to Evaluate the Aromaticity Degree of Natural Organic Matter Based on Oxidization-Induced Chemiluminescence. Environmental Science & Technology, 2020, 54, 4171-4179.	10.0	11
50	Comparison of 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and perfluorooctane sulfonate (PFOS) accumulation and toxicity in mung bean. Environmental Pollution, 2021, 287, 117332.	7.5	10
51	Cytotoxicity of hexabromocyclododecane, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane and 1,2,5,6-tetrabromocyclooctane in human SH-SY5Y neuroblastoma cells. Science of the Total Environment, 2020, 739, 139650.	8.0	7
52	Reducing Reagents Induce Molecular Artifacts in the Extraction of Soil Organic Matter. ACS Earth and Space Chemistry, 2020, 4, 1913-1919.	2.7	6
53	Synergetic mediation of reduced graphene oxide and Cu(II) on the oxidation of 2-naphthol in water. Environmental Pollution, 2019, 252, 689-696.	7.5	4
54	Interfacial Molecular Fractionation Induces Preferential Protection of Biorefractory Organic Matter by Ferrihydrite. ACS Earth and Space Chemistry, 2021, 5, 1094-1101.	2.7	4

#	Article	IF	CITATIONS
55	Discovery of CRR1-targeted copper deficiency response in <i>Chlamydomonas reinhardtii</i> exposed to silver nanoparticles. Nanotoxicology, 2019, 13, 447-454.	3.0	2
56	Diastereomer- and enantiomer-selective accumulation and depuration of 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexanes (DBE-DBCHs) and 1,2,5,6-tetrabromocyclooctanes (TBCOs) in earthworms (Eisenia fetida). Science of the Total Environment, 2022, 826, 154145.	8.0	2

5