MarÃ-a Ãfrica FernÃ;ndez-Prior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9851779/publications.pdf Version: 2024-02-01

MARÃA ÃFRICA

#	Article	IF	CITATIONS
1	Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 2019, 148, 213-218.	2.7	90
2	Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chemistry, 2019, 280, 310-320.	4.2	62
3	Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. LWT - Food Science and Technology, 2020, 130, 109645.	2.5	52
4	Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity. Foods, 2021, 10, 966.	1.9	29
5	Anti-Inflammatory and Antioxidant Activity of Hydroxytyrosol and 3,4-Dihydroxyphenyglycol Purified from Table Olive Effluents. Foods, 2021, 10, 227.	1.9	21
6	Colour, fatty acids, bioactive compounds, and total antioxidant capacity in commercial cocoa beans (Theobroma cacao L.). LWT - Food Science and Technology, 2021, 147, 111629.	2.5	21
7	Confirmation by solid-state NMR spectroscopy of a strong complex phenol-dietary fiber with retention of antioxidant activity in vitro. Food Hydrocolloids, 2020, 102, 105584.	5.6	19
8	Extra virgin olive oil jam enriched with cocoa bean husk extract rich in theobromine and phenols LWT - Food Science and Technology, 2019, 111, 278-283.	2.5	15
9	Deep eutectic solvents improve the biorefinery of alperujo by extraction of bioactive molecules in combination with industrial thermal treatments. Food and Bioproducts Processing, 2020, 121, 131-142.	1.8	14
10	New Liquid Source of Antioxidant Phenolic Compounds in the Olive Oil Industry: Alperujo Water. Foods, 2020, 9, 962.	1.9	13
11	Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods, 2021, 10, 503.	1.9	12
12	Rapid screening of unground cocoa beans based on their content of bioactive compounds by NIR spectroscopy. Food Control, 2022, 131, 108347.	2.8	10
13	Antimicrobial effects of treated olive mill waste on foodborne pathogens. LWT - Food Science and Technology, 2022, 164, 113628.	2.5	10
14	Effect of oliveâ€derived antioxidants (3,4â€dihydroxyphenylethanol and 3,4 dihydroxyphenylglycol) on sperm motility and fertility in liquid ram sperm stored at 15°C or 5°C. Reproduction in Domestic Animals, 2020, 55, 325-332.	0.6	9
15	Bayesian Analysis of the Effects of Olive Oil-Derived Antioxidants on Cryopreserved Buck Sperm Parameters. Animals, 2021, 11, 2032.	1.0	9
16	Effect of the Olive Oil Extraction Process on the Formation of Complex Pectin–Polyphenols and Their Antioxidant and Antiproliferative Activities. Antioxidants, 2021, 10, 1858.	2.2	9
17	Extra Virgin Oil Polyphenols Improve the Protective Effects of Hydroxytyrosol in an In Vitro Model of Hypoxia-Reoxygenation of Rat Brain. Brain Sciences, 2021, 11, 1133.	1.1	7
18	Synergistic effect of 3,4-dihydroxyphenylglycol with hydroxytyrosol and α-tocopherol on the Rancimat oxidative stability of vegetable oils. Innovative Food Science and Emerging Technologies, 2019, 51, 100-106.	2.7	6

MARÃA ÃFRICA

#	Article	IF	CITATIONS
19	Strawberry Puree Functionalized with Natural Hydroxytyrosol: Effects on Vitamin C and Antioxidant Activity. Molecules, 2020, 25, 5829.	1.7	6
20	From Green Technology to Functional Olive Oils: Assessing the Best Combination of Olive Tree-Related Extracts with Complementary Bioactivities. Antioxidants, 2021, 10, 202.	2.2	6
21	Nephroprotective Effect of the Virgin Olive Oil Polyphenol Hydroxytyrosol in Type 1-like Experimental Diabetes Mellitus: Relationships with Its Antioxidant Effect. Antioxidants, 2021, 10, 1783.	2.2	6
22	Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants, 2021, 10, 1983.	2.2	5
23	Biogas Potential of the Side Streams Obtained in a Novel Phenolic Extraction System from Olive Mill Solid Waste. Molecules, 2020, 25, 5438.	1.7	4
24	Neuroprotective Effect of 3′,4′-Dihydroxyphenylglycol in Type-1-like Diabetic Rats—Influence of the Hydroxytyrosol/3′,4′-dihydroxyphenylglycol Ratio. Nutrients, 2022, 14, 1146.	1.7	4
25	Formation of a bioactive cyclopentenone and its adducts with amino acids in sterilized-fruits and -	4.2	0