
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/985176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra. Cell Reports, 2018, 25, 3530-3542.e5.	2.9	204
2	^{î2} -Catenin promotes respiratory progenitor identity in mouse foregut. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16287-16292.	3.3	201
3	An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development (Cambridge), 2015, 142, 1893-1908.	1.2	108
4	Subchronic Exposure to TCDD, PeCDF, PCB126, and PCB153: Effect on Hepatic Gene Expression. Environmental Health Perspectives, 2004, 112, 1636-1644.	2.8	107
5	Subchronic Exposure to TCDD, PeCDF, PCB126, and PCB153: Effect on Hepatic Gene Expression. Environmental Health Perspectives, 2004, 112, 1636-1644.	2.8	94
6	Patterns of Gene Expression in the Bovine Corpus Luteum Following Repeated Intrauterine Infusions of Low Doses of Prostaglandin F2alpha1. Biology of Reproduction, 2012, 86, 130.	1.2	85
7	Development of the human prostate. Differentiation, 2018, 103, 24-45.	1.0	83
8	Fluorescence of Picrosirius Red Multiplexed With Immunohistochemistry for the Quantitative Assessment of Collagen in Tissue Sections. Journal of Histochemistry and Cytochemistry, 2017, 65, 479-490.	1.3	78
9	DNA Adduct Formation in Precision-Cut Rat Liver and Lung Slices Exposed to Benzo[a]pyrene. Toxicological Sciences, 2004, 77, 307-314.	1.4	77
10	Characterization of Fibrillar Collagens and Extracellular Matrix of Glandular Benign Prostatic Hyperplasia Nodules. PLoS ONE, 2014, 9, e109102.	1.1	71
11	Noggin is required for normal lobe patterning and ductal budding in the mouse prostate. Developmental Biology, 2007, 312, 217-230.	0.9	57
12	Atlas of Wnt and Râ€spondin gene expression in the developing male mouse lower urogenital tract. Developmental Dynamics, 2011, 240, 2548-2560.	0.8	53
13	Urethral luminal epithelia are castrationâ€insensitive cells of the proximal prostate. Prostate, 2020, 80, 872-884.	1.2	53
14	Evaluation of voiding assays in mice: impact of genetic strains and sex. American Journal of Physiology - Renal Physiology, 2015, 308, F1369-F1378.	1.3	52
15	Peripheral Serotonin Regulates Maternal Calcium Trafficking in Mammary Epithelial Cells during Lactation in Mice. PLoS ONE, 2014, 9, e110190.	1.1	51
16	AHR signaling in prostate growth, morphogenesis, and disease. Biochemical Pharmacology, 2009, 77, 566-576.	2.0	48
17	A highâ€resolution molecular atlas of the fetal mouse lower urogenital tract. Developmental Dynamics, 2011, 240, 2364-2377.	0.8	45
18	Serotonin Regulates Calcium Homeostasis in Lactation by Epigenetic Activation of Hedgehog Signaling. Molecular Endocrinology, 2014, 28, 1866-1874.	3.7	45

#	Article	IF	CITATIONS
19	Estrogen Receptor-α is a Key Mediator and Therapeutic Target for Bladder Complications of Benign Prostatic Hyperplasia. Journal of Urology, 2015, 193, 722-729.	0.2	45
20	Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands. BMC Genomics, 2010, 11, 583.	1.2	43
21	Void spot assay: recommendations on the use of a simple micturition assay for mice. American Journal of Physiology - Renal Physiology, 2018, 315, F1422-F1429.	1.3	43
22	Retinoic acid induces prostatic bud formation. Developmental Dynamics, 2008, 237, 1321-1333.	0.8	42
23	Serotonin (5-HT) Affects Expression of Liver Metabolic Enzymes and Mammary Gland Glucose Transporters during the Transition from Pregnancy to Lactation. PLoS ONE, 2013, 8, e57847.	1.1	41
24	WNT5A selectively inhibits mouse ventral prostate development. Developmental Biology, 2008, 324, 10-17.	0.9	40
25	A High Throughput in situ Hybridization Method to Characterize mRNA Expression Patterns in the Fetal Mouse Lower Urogenital Tract. Journal of Visualized Experiments, 2011, , .	0.2	39
26	Singleâ€cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions. Journal of Pathology, 2021, 255, 141-154.	2.1	39
27	Dioxin Causes Ventral Prostate Agenesis by Disrupting Dorsoventral Patterning in Developing Mouse Prostate. Toxicological Sciences, 2008, 106, 488-496.	1.4	37
28	Wnt Inhibitory Factor 1 (Wif1) Is Regulated by Androgens and Enhances Androgen-Dependent Prostate Development. Endocrinology, 2012, 153, 6091-6103.	1.4	37
29	Beta-catenin (CTNNB1) induces Bmp expression in urogenital sinus epithelium and participates in prostatic bud initiation and patterning. Developmental Biology, 2013, 376, 125-135.	0.9	37
30	Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. American Journal of Physiology - Renal Physiology, 2018, 315, F1067-F1080.	1.3	37
31	Hepatic Gene Downregulation following Acute and Subchronic Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2006, 94, 428-438.	1.4	35
32	Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development. Developmental Biology, 2014, 396, 237-245.	0.9	35
33	Influence of animal husbandry practices on void spot assay outcomes in C57BL/6J male mice. Neurourology and Urodynamics, 2016, 35, 192-198.	0.8	35
34	Visualization and quantification of mouse prostate development by in situ hybridization. Differentiation, 2012, 84, 232-239.	1.0	31
35	In-Depth Characterization and Validation of Human Urine Metabolomes Reveal Novel Metabolic Signatures of Lower Urinary Tract Symptoms. Scientific Reports, 2016, 6, 30869.	1.6	31
36	Loss-of-Function Variants in PPP1R12A: From Isolated Sex Reversal to Holoprosencephaly Spectrum and Urogenital Malformations. American Journal of Human Genetics, 2020, 106, 121-128.	2.6	30

#	Article	IF	CITATIONS
37	DNA methylation of E-cadherin is a priming mechanism for prostate development. Developmental Biology, 2014, 387, 142-153.	0.9	29
38	High collagen density augments mTOR-dependent cancer stem cells in ERα+ mammary carcinomas, and increases mTOR-independent lung metastases. Cancer Letters, 2018, 433, 1-9.	3.2	29
39	<i>In Utero</i> and Lactational TCDD Exposure Increases Susceptibility to Lower Urinary Tract Dysfunction in Adulthood. Toxicological Sciences, 2016, 150, 429-440.	1.4	27
40	Custom 4-Plex DiLeu Isobaric Labels Enable Relative Quantification of Urinary Proteins in Men with Lower Urinary Tract Symptoms (LUTS). PLoS ONE, 2015, 10, e0135415.	1.1	27
41	Androgenic regulation of ventral epithelial bud number and pattern in mouse urogenital sinus. Developmental Dynamics, 2010, 239, 373-385.	0.8	23
42	Hedgehog signaling in prostate growth and benign prostate hyperplasia. Current Urology Reports, 2007, 8, 275-280.	1.0	22
43	DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate. Epigenomics, 2015, 7, 413-425.	1.0	22
44	Antioxidant inhibits tamoxifen–DNA adducts in endometrial explant culture. Biochemical and Biophysical Research Communications, 2003, 307, 157-164.	1.0	21
45	TCDD Inhibition of Canonical Wnt Signaling Disrupts Prostatic Bud Formation in Mouse Urogenital Sinus. Toxicological Sciences, 2013, 133, 42-53.	1.4	19
46	Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate, 2020, 80, 731-741.	1.2	19
47	Distinct expression patterns of <i>Sulf1</i> and <i>Hs6st1</i> spatially regulate heparan sulfate sulfation during prostate development. Developmental Dynamics, 2012, 241, 2005-2013.	0.8	17
48	Impact of a folic acid-enriched diet on urinary tract function in mice treated with testosterone and estradiol. American Journal of Physiology - Renal Physiology, 2015, 308, F1431-F1443.	1.3	17
49	Radiation cystitis modeling: A comparative study of bladder fibrosis radioâ€sensitivity in C57BL/6, C3H, and BALB/c mice. Physiological Reports, 2020, 8, e14377.	0.7	17
50	Sulfatase 1 Is an Inhibitor of Ductal Morphogenesis with Sexually Dimorphic Expression in the Urogenital Sinus. Endocrinology, 2010, 151, 3420-3431.	1.4	16
51	Serotonin Receptor 5-HT3A Affects Development of Bladder Innervation and Urinary Bladder Function. Frontiers in Neuroscience, 2017, 11, 690.	1.4	16
52	Links between lower urinary tract symptoms, intermittent hypoxia and diabetes: Causes or cures?. Respiratory Physiology and Neurobiology, 2018, 256, 87-96.	0.7	16
53	Peripartum Fluoxetine Reduces Maternal Trabecular Bone After Weaning and Elevates Mammary Gland Serotonin and PTHrP. Endocrinology, 2018, 159, 2850-2862.	1.4	16
54	An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections. PLoS ONE, 2017, 12, e0188413.	1.1	14

#	Article	IF	CITATIONS
55	In vivo replacement of damaged bladder urothelium by Wolffian duct epithelial cells. Proceedings of the United States of America, 2018, 115, 8394-8399.	3.3	14
56	Prostate epithelialâ€specific expression of activated PI3K drives stromal collagen production and accumulation. Journal of Pathology, 2020, 250, 231-242.	2.1	14
57	GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiation. PLoS Genetics, 2020, 16, e1008810.	1.5	14
58	Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: functional assessment. American Journal of Physiology - Renal Physiology, 2019, 317, F996-F1009.	1.3	13
59	A uropathogenic <i>E. coli</i> UTI89 model of prostatic inflammation and collagen accumulation for use in studying aberrant collagen production in the prostate. American Journal of Physiology - Renal Physiology, 2021, 320, F31-F46.	1.3	13
60	Potential protective mechanisms of aryl hydrocarbon receptor (AHR) signaling in benign prostatic hyperplasia. Differentiation, 2011, 82, 211-219.	1.0	12
61	Prostatic collagen architecture in neutered and intact canines. Prostate, 2018, 78, 839-848.	1.2	11
62	2,3,7,8-Tetrachlorodibenzo-p-dioxin Inhibits Fibroblast Growth Factor 10-Induced Prostatic Bud Formation in Mouse Urogenital Sinus. Toxicological Sciences, 2010, 113, 198-206.	1.4	10
63	Histone acetylation regulates prostate ductal morphogenesis through a bone morphogenetic protein–dependent mechanism. Developmental Dynamics, 2015, 244, 1404-1414.	0.8	10
64	Genetic Etiology of Renal Agenesis: Fine Mapping of Renag1 and Identification of Kit as the Candidate Functional Gene. PLoS ONE, 2015, 10, e0118147.	1.1	10
65	Expression and colocalization of β-catenin and lymphoid enhancing factor-1 in prostate cancer progression. Human Pathology, 2016, 51, 124-133.	1.1	10
66	Quantitative proteomic analysis of a genetically induced prostate inflammation mouse model via custom 4-plex DiLeu isobaric labeling. American Journal of Physiology - Renal Physiology, 2019, 316, F1236-F1243.	1.3	10
67	Progenitors in prostate development and disease. Developmental Biology, 2021, 473, 50-58.	0.9	10
68	Beta-catenin is elevated in human benign prostatic hyperplasia specimens compared to histologically normal prostate tissue. American Journal of Clinical and Experimental Urology, 2014, 2, 313-22.	0.4	10
69	Prostate angiogenesis in development and inflammation. Prostate, 2014, 74, 346-358.	1.2	9
70	In Utero Exposure to TCDD Alters Wnt Signaling During Mouse Prostate Development: Linking Ventral Prostate Agenesis to Downregulated β-Catenin Signaling. Toxicological Sciences, 2014, 141, 176-187.	1.4	9
71	Magnetic Resonance Imaging and Molecular Characterization of a Hormone-Mediated Murine Model of Prostate Enlargement and Bladder Outlet Obstruction. American Journal of Pathology, 2017, 187, 2378-2387.	1.9	9
72	Cyp1b1 directs Srebp-mediated cholesterol and retinoid synthesis in perinatal liver; Association with retinoic acid activity during fetal development. PLoS ONE, 2020, 15, e0228436.	1.1	9

#	Article	IF	CITATIONS
73	Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. International Journal of Molecular Sciences, 2021, 22, 12461.	1.8	9
74	Beta-catenin and estrogen signaling collaborate to drive cyclin D1 expression in developing mouse prostate. Differentiation, 2017, 93, 66-71.	1.0	8
75	and lactational 2,3,7,8-tetrachlorodibenzo-dioxin (TCDD) exposure exacerbates urinary dysfunction in hormone-treated C57BL/6J mice through a non-malignant mechanism involving proteomic changes in the prostate that differ from those elicited by testosterone and estradiol. American Journal of Clinical and Experimental Urology. 2020. 8. 59-72.	0.4	8
76	lsoform distinct time-, dose-, and castration-dependent alterations in flavin-containing monooxygenase expression in mouse liver after 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment. Biochemical Pharmacology, 2010, 79, 1345-1351.	2.0	7
77	Catalog of mRNA expression patterns for DNA methylating and demethylating genes in developing mouse lower urinary tract. Gene Expression Patterns, 2013, 13, 413-424.	0.3	7
78	A temporal and spatial map of axons in developing mouse prostate. Histochemistry and Cell Biology, 2019, 152, 35-45.	0.8	7
79	A multi-omic investigation of male lower urinary tract symptoms: Potential role for JC virus. PLoS ONE, 2021, 16, e0246266.	1.1	7
80	The influence of intermittent hypoxia, obesity, and diabetes on male genitourinary anatomy and voiding physiology. American Journal of Physiology - Renal Physiology, 2021, 321, F82-F92.	1.3	7
81	Estrogen signaling is not required for prostatic bud patterning or for its disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2009, 239, 80-86.	1.3	6
82	Comprehensive urinary metabolomic characterization of a genetically induced mouse model of prostatic inflammation. International Journal of Mass Spectrometry, 2018, 434, 185-192.	0.7	6
83	Spatiotemporal Proteomics Reveals the Molecular Consequences of Hormone Treatment in a Mouse Model of Lower Urinary Tract Dysfunction. Journal of Proteome Research, 2020, 19, 1375-1382.	1.8	5
84	Peripartal treatment with lowâ€dose sertraline accelerates mammary gland involution and has minimal effects on maternal and offspring bone. Physiological Reports, 2022, 10, e15204.	0.7	5
85	Relevance of dog as an animal model for urologic diseases. Progress in Molecular Biology and Translational Science, 2022, , 35-65.	0.9	5
86	A mechanism linking perinatal 2,3,7,8 tetrachlorodibenzo-p-dioxin exposure to lower urinary tract dysfunction in adulthood. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	4
87	DNA methylation in development and disease: an overview for prostate researchers. American Journal of Clinical and Experimental Urology, 2018, 6, 197-218.	0.4	4
88	Void sorcerer: an open source, open access framework for mouse uroflowmetry. American Journal of Clinical and Experimental Urology, 2019, 7, 170-177.	0.4	4
89	Expression patterns of chemokine (C–C motif) ligand 2, prostaglandin F2A receptor and immediate early genes at mRNA level in the bovine corpus luteum after intrauterine treatment with a low dose of prostaglandin F2A. Theriogenology, 2022, 189, 70-76.	0.9	4
90	Insight and Resources From a Study of the "Impact of Sex, Androgens, and Prostate Size on C57BL/6J Mouse Urinary Physiology. Toxicologic Pathology, 2019, 47, 1038-1042.	0.9	3

CHAD M VEZINA

#	Article	IF	CITATIONS
91	A folic acidâ€enriched diet attenuates prostate involution in response to androgen deprivation. Prostate, 2019, 79, 183-194.	1.2	3
92	Synthesis and biological evaluation of FICZ analogues as agonists of aryl hydrocarbon receptor. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126959.	1.0	3
93	Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: urethral histology. American Journal of Physiology - Renal Physiology, 2020, 318, F617-F627.	1.3	3
94	A NEW approach for characterizing mouse urinary pathophysiologies. Physiological Reports, 2021, 9, e14964.	0.7	3
95	Impact of Fluoxetine Treatment and Folic Acid Supplementation on the Mammary Gland Transcriptome During Peak Lactation. Frontiers in Pharmacology, 2022, 13, 828735.	1.6	3
96	Male Reproductive Tract: Development Overview. , 2018, , 248-255.		2
97	Sox9 in mouse urogenital sinus epithelium mediates elongation of prostatic buds and expression of genes involved in epithelial cell migration. Gene Expression Patterns, 2019, 34, 119075.	0.3	2
98	Ultrasonography of the Adult Male Urinary Tract for Urinary Functional Testing. Journal of Visualized Experiments, 2019, , .	0.2	2
99	Epithelial DNA methyltransferase-1 regulates cell survival, growth and maturation in developing prostatic buds. Developmental Biology, 2019, 447, 157-169.	0.9	2
100	An immunohistochemical prostate cell identification key indicates that aging shifts procollagen 1A1 production from myofibroblasts to fibroblasts in dogs prone to prostate-related urinary dysfunction. PLoS ONE, 2020, 15, e0232564.	1.1	2
101	Genetic background but not prostatic epithelial beta-catenin influences susceptibility of male mice to testosterone and estradiol-induced urinary dysfunction. American Journal of Clinical and Experimental Urology, 2021, 9, 121-131.	0.4	2
102	Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. Toxics, 2022, 10, 89.	1.6	2
103	Edar is a downstream target of beta-catenin and drives collagen accumulation in the mouse prostate. Biology Open, 2019, 8, .	0.6	1
104	Hedgehog signaling in prostate growth and benign prostate hyperplasia. Current Prostate Reports, 2007, 5, 27-32.	0.1	0
105	Title is missing!. , 2020, 16, e1008810.		0
106	Title is missing!. , 2020, 16, e1008810.		0
107	Title is missing!. , 2020, 16, e1008810.		0
108	Title is missing!. , 2020, 16, e1008810.		0

#	Article	IF	CITATIONS
109	Title is missing!. , 2020, 15, e0232564.		0
110	Title is missing!. , 2020, 15, e0232564.		0
111	Title is missing!. , 2020, 15, e0232564.		0
112	Title is missing!. , 2020, 15, e0232564.		0
113	A retrospective review of canine benign prostatic hyperplasia with and without prostatitis , 2021, 13, 360-366.		0