Petr HlavÃ;Äek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/985014/publications.pdf

Version: 2024-02-01

840776 839539 28 353 11 18 citations h-index g-index papers 31 31 31 244 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet. International Journal of Advanced Manufacturing Technology, 2018, 94, 2293-2300.	3.0	39
2	Experimental analysis of irregularities of metallic surfaces generated by abrasive waterjet. International Journal of Machine Tools and Manufacture, 2007, 47, 1786-1790.	13.4	34
3	Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints. International Journal of Advanced Manufacturing Technology, 2017, 88, 1687-1701.	3.0	33
4	Sandstone Turning by Abrasive Waterjet. Rock Mechanics and Rock Engineering, 2015, 48, 2489-2493.	5.4	32
5	Turning of wood plastic composites by water jet and abrasive water jet. International Journal of Advanced Manufacturing Technology, 2016, 84, 1615.	3.0	32
6	Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM). Materials and Manufacturing Processes, 2017, 32, 1707-1714.	4.7	28
7	Tangential turning of Incoloy alloy 925 using abrasive water jet technology. International Journal of Advanced Manufacturing Technology, 2016, 82, 1747-1752.	3.0	25
8	Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED. Measurement: Journal of the International Measurement Confederation, 2019, 131, 628-639.	5.0	24
9	Influence of Variously Modified Surface of Aluminium Alloy on the Effect of Pulsating Water Jet. Strojniski Vestnik/Journal of Mechanical Engineering, 2017, 63, 577-582.	1.1	16
10	Influence of Abrasive Water Jet Turning Parameters on Variation of Diameter of Hybrid Metal Matrix Composite. Lecture Notes in Mechanical Engineering, 2018, , 495-504.	0.4	13
11	Hydro-abrasive Disintegration of Alloy Monel K-500 – the Influence of Technological and Abrasive Factors on the Surface Quality. Procedia Engineering, 2016, 149, 17-23.	1.2	11
12	Effect of Water Pressure During Abrasive Waterjet Machining of Mg-Based Nanocomposite. Lecture Notes in Mechanical Engineering, 2018, , 605-612.	0.4	11
13	Effects of Continuous and Pulsating Water Jet on CNT/Concrete Composite. Strojniski Vestnik/Journal of Mechanical Engineering, 2017, 63, 583-589.	1.1	11
14	The Research into the Quality of Rock Surfaces Obtained by Abrasive Water Jet Cutting. Archives of Mining Sciences, 2014, 59, 925-940.	0.6	7
15	Evaluation of physical phenomena and surface integrity during hydroabrasive disintegration of the rotating workpiece with feedback loop control. Measurement: Journal of the International Measurement Confederation, 2019, 134, 586-594.	5.0	7
16	Use of high-speed water flows for accelerated mechanical modelling of erosive wear of concrete surfaces. MATEC Web of Conferences, 2018, 244, 02007.	0.2	5
17	ABRASIVE WATER JET DRILLING OF COOLING HOLES IN AEROENGINES: PRELIMINARY EXPERIMENTAL STUDY. MM Science Journal, 2018, 2018, 2218-2222.	0.4	5
18	Effect of rotation direction, traverse speed, and abrasive type during the hydroabrasive disintegration of a rotating Ti6Al4V workpiece. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 1848-1860.	2.4	3

#	Article	IF	CITATIONS
19	Laboratory Experiments on Effects of Water Jet on Heat-Affected Concretes. Applied Mechanics and Materials, 2013, 459, 650-657.	0.2	2
20	TURNING OF MATERIALS WITH HIGH-SPEED ABRASIVE WATER JET. MM Science Journal, 2016, 2016, 1160-1165.	0.4	2
21	EVALUATION OF EROSION PERFORMANCE OF ABRASIVE PARTICLES IN ABRASIVE WATER JET CUTTING PROCESS. MM Science Journal, 2020, 2020, 3869-3872.	0.4	2
22	Effects of Shaping Method on Properties of Rock Samples. Procedia Engineering, 2017, 191, 703-710.	1.2	1
23	X-Ray CT inspection of subsurface areas of concretes exposed to fast flowing liquids. New Trends in Production Engineering, 2019, 2, 450-459.	0.3	1
24	Effect of Standoff Distance on the Erosion of Various Materials. Lecture Notes in Mechanical Engineering, 2021, , 164-171.	0.4	1
25	Pulsating Abrasive Water Jet Cutting Using a Standard Abrasive Injection Cutting Head – Preliminary Tests. Lecture Notes in Mechanical Engineering, 2021, , 186-196.	0.4	1
26	Flow Erosion Resistance of Concrete - Interaction of High-Speed Water Jet and Concrete. Solid State Phenomena, 0, 296, 215-220.	0.3	0
27	Influence of Concrete Age on Resistance to Fast-Flowing Liquids. Lecture Notes in Mechanical Engineering, 2021, , 73-80.	0.4	0
28	Creating a Database for Turned Surfaces. Lecture Notes in Mechanical Engineering, 2021, , 105-114.	0.4	0