Given Names Deactivated Family Name

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9849004/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production. Journal of Hazardous Materials, 2022, 421, 126792.	12.4	62
2	Sonoprocessing: From Concepts to Large-Scale Reactors. Chemical Reviews, 2022, 122, 3219-3258.	47.7	61
3	Heat and ZnCl2 chemical carbonization of date stone as an adsorbent: optimization of material fabrication parameters and adsorption studies. Environmental Science and Pollution Research, 2022, 29, 46038-46048.	5.3	5
4	Visible light responsive heterostructure HTDMA-BiPO4 modified clays for effective diclofenac sodium oxidation: Role of interface interactions and basal spacing. Journal of Water Process Engineering, 2022, 48, 102788.	5.6	14
5	Sustainable purification of phosphoric acid contaminated with Cr(VI) by Ag/Ag3PO4 coated activated carbon/montmorillonite under UV and solar light: Materials design and photocatalytic mechanism. Journal of Environmental Chemical Engineering, 2022, 10, 107870.	6.7	22
6	Utilization of electrochemical treatment and surface reconstruction to achieve long lasting catalyst for NOx removal. Journal of Hazardous Materials, 2021, 401, 123440.	12.4	21
7	Ultrafast conversion of carcinogenic 4-nitrophenol into 4-aminophenol in the dark catalyzed by surface interaction on BiPO ₄ /g-C ₃ N ₄ nanostructures in the presence of NaBH ₄ . RSC Advances, 2021, 11, 18797-18808.	3.6	14
8	Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts, 2021, 11, 349.	3.5	7
9	Recent advances in hybrid wet scrubbing techniques for NOx and SO2 removal: State of the art and future research. Chemosphere, 2021, 273, 129695.	8.2	45
10	SWOT analysis of photocatalytic materials towards large scale environmental remediation. Current Opinion in Chemical Engineering, 2021, 33, 100696.	7.8	51
11	Comparison of the photoactivity of several semiconductor oxides in floating aerogel and suspension systems towards the reduction of Cr(VI) under visible light. Chemosphere, 2021, 281, 130839.	8.2	34
12	Intensification of nickel recovery from water using an electrically driven hybrid process: continuous electropermutation. Environmental Technology (United Kingdom), 2020, 41, 2003-2012.	2.2	6
13	FeS@rGO nanocomposites as electrocatalysts for enhanced chromium removal and clean energy generation by microbial fuel cell. Chemical Engineering Journal, 2020, 384, 123335.	12.7	66
14	Recovery of Phosphorus from Hypophosphite-Laden Wastewater: A Single-Compartment Photoelectrocatalytic Cell System Integrating Oxidation and Precipitation. Environmental Science & Technology, 2020, 54, 1204-1213.	10.0	25
15	Synthesis of magnetic recoverable electron-rich TCTA@PVP based conjugated polymer for photocatalytic water remediation and disinfection. Separation and Purification Technology, 2020, 250, 116954.	7.9	29
16	Visible light responsive photoactive polymer supported on carbonaceous biomass for photocatalytic water remediation. Journal of Cleaner Production, 2020, 269, 122286.	9.3	34
17	Recovery of phosphorus and metallic nickel along with HCl production from electroless nickel plating effluents: The key role of three-compartment photoelectrocatalytic cell system. Journal of Hazardous Materials, 2020, 394, 122559.	12.4	16
18	Digitally Printed AgNPs Doped TiO2 on Commercial Porcelain-Grès Tiles: Synergistic Effects and Continuous Photocatalytic Antibacterial Activity. Surfaces, 2020, 3, 11-25.	2.3	18

GIVEN NAMES DEACTIVATED

#	Article	IF	CITATIONS
19	Electrochemical sensor based on ZIF-8@dimethylglyoxime and β-cyclodextrin modified reduced graphene oxide for nickel (II) detection. Sensors and Actuators B: Chemical, 2020, 315, 128091.	7.8	32
20	Sustainable self-floating lignocellulosic biomass-TiO2@Aerogel for outdoor solar photocatalytic Cr(VI) reduction. Separation and Purification Technology, 2019, 229, 115830.	7.9	36
21	Fe ₃ O ₄ Nanoparticles Coated with EDTA and Ag Nanoparticles for the Catalytic Reduction of Organic Dyes from Wastewater. ACS Applied Nano Materials, 2019, 2, 5310-5319.	5.0	83
22	Enhancement of Ni/NiO/graphitized carbon and β-Cyclodextrin/reduced graphene oxide for the electrochemical detection of norfloxacin in water sample. Journal of Electroanalytical Chemistry, 2019, 851, 113407.	3.8	18
23	Unravelling the mechanistic role of Ti O C bonding bridge at titania/lignocellulosic biomass interface for Cr(VI) photoreduction under visible light. Journal of Colloid and Interface Science, 2019, 553, 409-417.	9.4	76
24	Sustainable and easy recoverable magnetic TiO2-Lignocellulosic Biomass@Fe3O4 for solar photocatalytic water remediation. Journal of Cleaner Production, 2019, 233, 841-847.	9.3	68
25	Carbonaceous biomass-titania composites with Ti O C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chemical Engineering Journal, 2019, 366, 172-180.	12.7	113
26	Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenol by TiO2/Ru-IrO2 bifacial electrode. Chemical Engineering Journal, 2018, 343, 69-77.	12.7	58
27	Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability. Energies, 2018, 11, 1822.	3.1	55
28	Intensification of heterogeneous TiO2 photocatalysis using an innovative micro–meso-structured-reactor for Cr(VI) reduction under simulated solar light. Chemical Engineering Journal, 2017, 318, 76-88.	12.7	76
29	Simultaneous Removal of Methylene Blue and Hexavalent Chromium From Water Using TiO ₂ /Fe(III)/H ₂ O ₂ /Sunlight. Clean - Soil, Air, Water, 2017, 45, 1500379.	1.1	30
30	Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Applied Catalysis B: Environmental, 2017, 203, 18-30.	20.2	187
31	Cr(VI) photocatalytic reduction under sunlight followed by Cr(III) extraction from TiO 2 surface. Materials Letters, 2016, 176, 106-109.	2.6	73
32	Enhanced Photoelectrocatalytic Decomposition of Copper Cyanide Complexes and Simultaneous Recovery of Copper with a Bi ₂ MoO ₆ Electrode under Visible Light by EDTA/K ₄ P ₂ O ₇ . Environmental Science & amp; Technology, 2015, 49, 4567-4574.	10.0	45
33	Simultaneous destruction of Nickel (II)-EDTA with TiO2/Ti film anode and electrodeposition of nickel ions on the cathode. Applied Catalysis B: Environmental, 2014, 144, 478-485.	20.2	95
34	Photoelectrocatalytic Oxidation of Cu ^{II} –EDTA at the TiO ₂ Electrode and Simultaneous Recovery of Cu ^{II} by Electrodeposition. Environmental Science & Technology, 2013, 47, 4480-4488.	10.0	151