
Rodrigo C S Veneziani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/984895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial activity of terpenoids from <i>Copaifera langsdorffii</i> Desf. against cariogenic bacteria. Phytotherapy Research, 2011, 25, 215-220.	2.8	89
2	Antimicrobial Evaluation of Diterpenes from Copaifera langsdorffii Oleoresin Against Periodontal Anaerobic Bacteria. Molecules, 2011, 16, 9611-9619.	1.7	86
3	Pimarane-type Diterpenes: Antimicrobial Activity against Oral Pathogens. Molecules, 2009, 14, 191-199.	1.7	82
4	Schistosomicidal Activity of the Essential Oil of Ageratum conyzoides L. (Asteraceae) against Adult Schistosoma mansoni Worms. Molecules, 2011, 16, 762-773.	1.7	64
5	Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus—A review. Biomedicine and Pharmacotherapy, 2019, 109, 1-20.	2.5	64
6	Copaifera reticulata oleoresin: Chemical characterization and antibacterial properties against oral pathogens. Anaerobe, 2016, 40, 18-27.	1.0	60
7	Chemical Composition and <i>in vitro</i> Schistosomicidal Activity of the Essential Oil of <i>Plectranthus neochilus</i> Grown in Southeast Brazil. Chemistry and Biodiversity, 2011, 8, 2149-2157.	1.0	51
8	Antimicrobial Activity of Kaurane Diterpenes against Oral Pathogens. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 326-330.	0.6	50
9	Antimicrobial ent-pimarane diterpenes from Viguiera arenaria against Gram-positive bacteria. Fìtoterapìâ, 2009, 80, 432-436.	1.1	46
10	Antimicrobial Activity of Diterpenes from Viguiera arenaria against Endodontic Bacteria. Molecules, 2011, 16, 543-551.	1.7	46
11	Plant-derived essential oils affecting settlement and oviposition of Bemisia tabaci (Genn.) biotype B on tomato. Journal of Pest Science, 2013, 86, 301-308.	1.9	42
12	Antileishmanial Activity of the Hydroalcoholic Extract of Miconia langsdorffii, Isolated Compounds, and Semi-Synthetic Derivatives. Molecules, 2011, 16, 1825-1833.	1.7	41
13	Antibacterial activity of Pinus elliottii and its major compound, dehydroabietic acid, against multidrug-resistant strains. Journal of Medical Microbiology, 2014, 63, 1649-1653.	0.7	39
14	Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production. PLoS ONE, 2016, 11, e0149656.	1.1	37
15	Mikania glomerata Sprengel extract and its major compound ent-kaurenoic acid display activity against bacteria present in endodontic infections. Anaerobe, 2017, 47, 201-208.	1.0	34
16	Development of a validated ultra-high-performance liquid chromatography tandem mass spectrometry method for determination of acid diterpenes in Copaifera oleoresins. Journal of Chromatography A, 2017, 1515, 81-90.	1.8	34
17	Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines. BMC Complementary and Alternative Medicine, 2015, 15, 443.	3.7	33
18	Variabilidade sazonal do teor de saponinas de Baccharis trimera (Less.) DC (Carqueja) e isolamento de flavona. Revista Brasileira De Farmacognosia, 2006, 16, 557-561.	0.6	30

RODRIGO C S VENEZIANI

#	Article	IF	CITATIONS
19	Antimicrobial activity of the essential oil of Tetradenia riparia (Hochst.) Codd. (Lamiaceae) against cariogenic bacteria. Brazilian Journal of Microbiology, 2015, 46, 519-525.	0.8	30
20	Immunomodulatory action of Copaifera spp oleoresins on cytokine production by human monocytes. Biomedicine and Pharmacotherapy, 2015, 70, 12-18.	2.5	30
21	Identification of biologically active triterpenes and sterols present in hexane extracts fromMiconia species using high-resolution gas chromatography. Biomedical Chromatography, 2006, 20, 827-830.	0.8	28
22	Manool, a Salvia officinalis diterpene, induces selective cytotoxicity in cancer cells. Cytotechnology, 2016, 68, 2139-2143.	0.7	28
23	In vitro schistosomicidal effects of the essential oil of Tagetes erecta. Revista Brasileira De Farmacognosia, 2012, 22, 88-93.	0.6	27
24	Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections. Anaerobe, 2014, 30, 146-152.	1.0	27
25	Constituents of Mikania glomerata Sprengel. Biochemical Systematics and Ecology, 1999, 27, 99-102.	0.6	26
26	Antibacterial activity of salvia officinalis L. against periodontopathogens: An inÂvitro study. Anaerobe, 2020, 63, 102194.	1.0	26
27	Differential effect of manool – A diterpene from Salvia officinalis, on genotoxicity induced by methyl methanesulfonate in V79 and HepG2 cells. Food and Chemical Toxicology, 2014, 72, 8-12.	1.8	24
28	<i>Copaifera duckei</i> Oleoresin and Its Main Nonvolatile Terpenes: <i>In Vitro</i> Schistosomicidal Properties. Chemistry and Biodiversity, 2016, 13, 1348-1356.	1.0	24
29	Evaluation of ent-kaurenoic acid derivatives for their anticariogenic activity. Natural Product Communications, 2011, 6, 777-80.	0.2	24
30	ent-Kaurenoic acid-rich extract from Mikania glomerata: In vitro activity against bacteria responsible for dental caries. Fìtoterapìâ, 2016, 112, 211-216.	1.1	23
31	RP-HPLC analysis of manool-rich Salvia officinalis extract and its antimicrobial activity against bacteria associated with dental caries. Revista Brasileira De Farmacognosia, 2013, 23, 870-876.	0.6	22
32	In Vitro Antimicrobial Activity of Plant-Derived Diterpenes against Bovine Mastitis Bacteria. Molecules, 2013, 18, 7865-7872.	1.7	22
33	A validated HPLC-UV method for the analysis of phenolic compounds in Brazilian red propolis and Dalbergia ecastaphyllum. Journal of Pharmaceutical and Biomedical Analysis, 2021, 198, 114029.	1.4	22
34	Anticariogenic Properties of ent-Pimarane Diterpenes Obtained by Microbial Transformation. Molecules, 2010, 15, 8553-8566.	1.7	21
35	Assessment of genotoxic activity of oleoresins and leaves extracts of six Copaifera species for prediction of potential human risks. Journal of Ethnopharmacology, 2018, 221, 119-125.	2.0	21
36	In vitro cytotoxicity and structure-activity relationship approaches of ent-kaurenoic acid derivatives against human breast carcinoma cell line. Phytochemistry, 2018, 156, 214-223.	1.4	21

RODRIGO C S VENEZIANI

#	Article	IF	CITATIONS
37	Differences in secondary metabolites from leaf extracts of Mikania glomerata Sprengel obtained by micropropagation and cuttings. Revista Brasileira De Farmacognosia, 2006, 16, 596-598.	0.6	20
38	Fungal Transformation and Schistosomicidal Effects of Pimaradienoic Acid. Chemistry and Biodiversity, 2012, 9, 1465-1474.	1.0	19
39	In vitro Evaluation of Copaifera oblongifolia Oleoresin Against Bacteria Causing Oral Infections and Assessment of Its Cytotoxic Potential. Current Pharmaceutical Biotechnology, 2016, 17, 894-904.	0.9	19
40	Antimutagenic Potential ofSolanum lycocarpumagainst Induction of Chromosomal Aberrations in V79 Cells and Micronuclei in Mice by Doxorubicin. Planta Medica, 2011, 77, 1489-1494.	0.7	18
41	Antibacterial Effect of Copaifera duckei Dwyer Oleoresin and Its Main Diterpenes against Oral Pathogens and Their Cytotoxic Effect. Frontiers in Microbiology, 2018, 9, 201.	1.5	18
42	Antibacterial Potential of Diterpenoids. Studies in Natural Products Chemistry, 2017, 54, 109-139.	0.8	17
43	Licochalcone A induces morphological and biochemical alterations in Schistosoma mansoni adult worms. Biomedicine and Pharmacotherapy, 2017, 96, 64-71.	2.5	17
44	Antibacterial and Cytotoxic Activities of Pinus tropicalis and Pinus elliottii Resins and of the Diterpene Dehydroabietic Acid Against Bacteria That Cause Dental Caries. Frontiers in Microbiology, 2019, 10, 987.	1.5	17
45	Performance of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) on eggs of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Scientific Reports, 2019, 9, 1156.	1.6	17
46	Synthesis and biological evaluation of polyalthic acid derivatives for the treatment of neglected diseases. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5529-5531.	1.0	16
47	Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants. Scientific Reports, 2020, 10, 15158.	1.6	16
48	IsolationÂof diterpenes fromÂAraucariaÂspÂBrazilian brown propolisÂand development of a validated highâ€performance liquid chromatography method for its analysis. Journal of Separation Science, 2021, 44, 3089-3097.	1.3	16
49	Schistosomicidal activity of kaurane, labdane and clerodane-type diterpenes obtained by fungal transformation. Process Biochemistry, 2020, 98, 34-40.	1.8	15
50	Pimaraneâ€ŧype Diterpenes Obtained by Biotransformation: Antimicrobial Properties Against Clinically Isolated Gramâ€positive Multidrugâ€resistant Bacteria. Phytotherapy Research, 2013, 27, 1502-1507.	2.8	14
51	Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria. Brazilian Journal of Microbiology, 2012, 43, 793-799.	0.8	14
52	Biotransformation of ent-pimaradienoic acid by cell cultures of Aspergillus niger. Bioorganic and Medicinal Chemistry, 2013, 21, 5870-5875.	1.4	14
53	Assessment of the in vitro and in vivo genotoxic and antigenotoxic effects of pimaradienoic acid in mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 749, 87-92.	0.9	12
54	ent-Copalic acid antibacterial and anti-biofilm properties against Actinomyces naeslundii and Peptostreptococcus anaerobius. Anaerobe, 2018, 52, 43-49.	1.0	12

#	Article	IF	CITATIONS
55	Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Scientific Reports, 2021, 11, 4953.	1.6	12
56	In vitro studies of the antibacterial activity of Copaifera spp. oleoresins, sodium hypochlorite, and peracetic acid against clinical and environmental isolates recovered from a hemodialysis unit. Antimicrobial Resistance and Infection Control, 2018, 7, 14.	1.5	11
57	Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity. Journal of Fungi (Basel, Switzerland), 2020, 6, 153.	1.5	11
58	Antibacterial activity of 15-deoxygoyazensolide isolated from the stems ofMinasia alpestris(Asteraceae) against oral pathogens. Natural Product Research, 2011, 25, 326-331.	1.0	10
59	Licochalcone a Exhibits Leishmanicidal Activity in vitro and in Experimental Model of Leishmania (Leishmania) Infantum. Frontiers in Veterinary Science, 2020, 7, 527.	0.9	10
60	Green and Red Brazilian Propolis: Antimicrobial Potential and Antiâ€Virulence against ATCC and Clinically Isolated Multidrugâ€Resistant Bacteria. Chemistry and Biodiversity, 2021, 18, e2100307.	1.0	10
61	Development and validation of a rapid RPâ€HPLC method for analysis of (â^)â€copalic acid in copaÃba oleoresin. Biomedical Chromatography, 2013, 27, 280-283.	0.8	9
62	<i>In vitro</i> cytotoxicity, genotoxicity and antigenotoxicity assessment of <i>Solanum lycocarpum</i> hydroalcoholic extract. Pharmaceutical Biology, 2016, 54, 2786-2790.	1.3	9
63	Biotransformation of (-)-cubebin by <i>Aspergillus</i> spp. into (-)-hinokinin and (-)-parabenzlactone, and their evaluation against oral pathogenic bacteria. Natural Product Research, 2018, 32, 2803-2816.	1.0	9
64	Antibacterial, Preservative, and Mutagenic Potential of Copaifera spp. Oleoresins Against Causative Agents of Foodborne Diseases. Foodborne Pathogens and Disease, 2018, 15, 790-797.	0.8	9
65	Assessment of the antibacterial, antivirulence, and action mechanism of Copaifera pubiflora oleoresin and isolated compounds against oral bacteria. Biomedicine and Pharmacotherapy, 2020, 129, 110467.	2.5	9
66	Evaluation of the antiseptic and wound healing potential of polyhexamethylene guanidine hydrochloride as well as its toxic effects. European Journal of Pharmaceutical Sciences, 2021, 160, 105739.	1.9	9
67	In vitro cytotoxicity study of ent-kaurenoic acid derivatives against human breast carcinoma cell line. Medicinal Chemistry Research, 2016, 25, 303-309.	1.1	8
68	Screening of plant extracts from the Brazilian Cerrado for theirin vitrotrypanocidal activity. Pharmaceutical Biology, 2009, 47, 744-749.	1.3	7
69	Evaluation of <i>ent</i> -Kaurenoic Acid Derivatives for their Anticariogenic Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	7
70	Kaurenoic acid and its sodium salt derivative: antibacterial activity against <i>Porphyromonas gingivalis</i> and their mechanism of action. Future Microbiology, 2018, 13, 1585-1601.	1.0	7
71	Investigation of <i>Copaifera</i> genus as a new source of antimycobaterial agents. Future Science OA, 2020, 6, FSO587.	0.9	7
72	Comparative study of the cytotoxicity and genotoxicity of kaurenoic acid and its semi-synthetic derivatives methoxy kaurenoic acid and kaurenol in CHO-K1 cells. Food and Chemical Toxicology, 2017, 102, 102-108.	1.8	6

RODRIGO C S VENEZIANI

#	Article	IF	CITATIONS
73	Antimicrobial Potential of Natural and Semi-Synthetic ent-Kaurane and ent-Pimarane Diterpenes against Clinically Isolated Gram-Positive Multidrug-Resistant Bacteria. Journal of the Brazilian Chemical Society, 0, , .	0.6	5
74	Investigation of Safety Profile of Four <i> Copaifera</i> Species and of Kaurenoic Acid by <i> Salmonella</i> /Microsome Test. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-9.	0.5	5
75	Feeding deterrence towards Helicoverpa armigera by Tithonia diversifolia tagitinin C-enriched extract. Arabian Journal of Chemistry, 2020, 13, 5292-5298.	2.3	5
76	Manool, a diterpene from Salvia officinalis, exerts preventive effects on chromosomal damage and preneoplastic lesions. Mutagenesis, 2021, 36, 177-185.	1.0	5
77	Antitubercular Activity Increase in Labdane Diterpenes from Copaifera Oleoresin through Structural Modification. Journal of the Brazilian Chemical Society, 0, , .	0.6	4
78	Development and Validation of a Rapid and Reliable RP-HPLC-PDA Method for the Quantification of Six Diterpenes in Copaifera duckei, Copaifera reticulata and Copaifera multijuga Oleoresins. Journal of the Brazilian Chemical Society, 2017, , .	0.6	4
79	Copaifera multijuga, Copaifera pubiflora and Copaifera trapezifolia Oleoresins: Chemical Characterization and in vitro Cytotoxic Potential against Tumoral Cell Lines. Journal of the Brazilian Chemical Society, 0, , .	0.6	4
80	Antitumor Effect of Manool in a Murine Melanoma Model. Journal of Natural Products, 2022, 85, 426-432.	1.5	4
81	Lignans: Chemical and Biological Properties. , 0, , .		3
82	Effect of Endophytic Fungal Associations on the Chemical Profile of in vitro Vochysia divergens Seedlings. Journal of the Brazilian Chemical Society, 0, , .	0.6	3
83	Polyalthic Acid in Polymeric Nanoparticles Causes Selective Growth Inhibition and Genotoxicity in MCF-7 Cells. Natural Product Communications, 2019, 14, 1934578X1984270.	0.2	3
84	Uncovering Biological Application of Brazilian Green Propolis: A Phenotypic Screening against Schistosoma mansoni. Chemistry and Biodiversity, 2020, 17, e2000277.	1.0	3
85	In vitro Antibacterial Potential of the Oleoresin, Leaf Crude Hydroalcoholic Extracts and Isolated Compounds of the Copaifera spp. Against Helicobacter pylori. Journal of Biologically Active Products From Nature, 2021, 11, 183-189.	0.1	3
86	Antifungal Activity of Oleoresin and Fractions of Pinus elliottii Engelm and Pinus tropicalis against Phytopathogens. American Journal of Plant Sciences, 2014, 05, 3898-3903.	0.3	3
87	Variability of the antibacterial potential among analogue diterpenes against Gram-positive bacteria: considerations on the structure–activity relationship. Canadian Journal of Chemistry, 2019, 97, 568-575.	0.6	2
88	Antibacterial Profile of Copaifera multijuga Oleoresin and Hydroalcoholic Extract of Leaves Against Oral Pathogens. Current Research in Dentistry, 2019, 1, 53-60.	1.0	2
89	Optimization of (–)-cubebin biotransformation to (–)-hinokinin by the marine fungus Absidia coerulea 3A9. Archives of Microbiology, 2021, 203, 4313-4318.	1.0	2
90	Screening of selected essential oils for their in vitro antileishmanial activity against Leishmania amazonensis. Planta Medica, 2010, 76, .	0.7	2

#	Article	IF	CITATIONS
91	Brazilian green propolis reduces worm burden and hepatic granuloma formation in a Schistosoma mansoni experimental murine model. Parasitology Research, 2022, 121, 775-780.	0.6	2
92	Kaurenoic Acid Induces Cell Cycle Arrest and Apoptosis in the MCFâ€7 Breast Cancer Cell Line. ChemistrySelect, 2020, 5, 11850-11853.	0.7	1
93	Diterpenes from Copaifera langsdorfii oleoresin against anaerobic oral pathogens. Planta Medica, 2011, 77, .	0.7	1
94	Evaluation of the antiproliferative activity of red propolis hydroalcoholic extract and its fractions obtained by partition. Biofarmasi Journal of Natural Product Biochemistry, 2020, 18, .	0.8	1
95	Baccharis Terpenoid Compounds. , 2021, , 329-352.		1
96	IN VITRO TRYPANOCIDAL ACTIVITY AND CHEMICAL CONSTITUENTS OF ASPILIA PLATYPHYLLA (BAKER) BLAKE. Journal of the Chilean Chemical Society, 2007, 52, .	0.5	0
97	Evaluation of the in vitro trypanocidal activity of plant extracts from the Brazilian Cerrado. Planta Medica, 2009, 75, .	0.7	Ο
98	Antibacterial actvity and synergistic effect investigation of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Planta Medica, 2010, 76, .	0.7	0
99	Antibacterial activity of pimarane-type diterpenes against endodontic pathogens. Planta Medica, 2010, 76, .	0.7	0
100	Fungal transformation of pimaradienoic acid and its schistosomicidal activity against Schistosoma mansoni. Planta Medica, 2011, 77, .	0.7	0
101	Biotransformation of ent-8(14),15-pimaradiene and antimicrobial activity of the obtained derivatives against multi-resistant Gram-positive bacteria. Planta Medica, 2011, 77, .	0.7	0
102	Antitubercular activity of pimarane and kaurane diterpenes against Mycobacterium tuberculosis. Planta Medica, 2011, 77, .	0.7	0
103	Anti-biofilm Activity of Pimarane Diterpenoids Against Anaerobes. Planta Medica, 2011, 77, .	0.7	0
104	Antispasmodic activity of pimaradienoic acid derivatives obtained by microbial transformation. Planta Medica, 2012, 78, .	0.7	0
105	Hydroxylation of kaurenoic acid by Aspergillus terreus. Planta Medica, 2012, 78, .	0.7	Ο
106	Fungal transformation of diterpenes by Aspergillus phoenix. Planta Medica, 2013, 79, .	0.7	0
107	Antibacterial evaluation of Copaifera langsdorffii oleoresin and its isolated compounds against multiresistant bacteria. Planta Medica, 2014, 80, .	0.7	Ο
108	Anti-biofilm and kinetic studies of kaurane diterpenes that targets oral anaerobes. Planta Medica, 2014, 80, .	0.7	0

#	Article	IF	CITATIONS
109	Diterpenes of the kaurane type: Bactericidal kinetics and synergistic effect associated with chlorhexidine. Planta Medica, 2014, 80, .	0.7	0