Wen Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9848793/publications.pdf Version: 2024-02-01

		687363	713466
22	581	13	21
papers	citations	h-index	g-index
23	23	23	878
all docs	docs citations	times ranked	citing authors

WEN ZENC

#	Article	IF	CITATIONS
1	Programmable dual responsive system reconstructing nerve interaction with small-diameter tissue-engineered vascular grafts and inhibiting intimal hyperplasia in diabetes. Bioactive Materials, 2022, 7, 466-477.	15.6	5
2	Activation of Wnt/β-catenin pathway mitigates blood–brain barrier dysfunction in Alzheimer's disease. Brain, 2022, 145, 4474-4488.	7.6	41
3	Review on the Vascularization of Organoids and Organoids-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 2021, 9, 637048.	4.1	58
4	Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioactive Materials, 2021, 6, 2557-2568.	15.6	25
5	Surfaceâ€Engineered Monocyte Inhibits Atherosclerotic Plaque Destabilization via Graphene Quantum Dotâ€Mediated MicroRNA Delivery. Advanced Healthcare Materials, 2019, 8, e1900386.	7.6	18
6	Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. Journal of Cellular Physiology, 2019, 234, 8788-8796.	4.1	62
7	Tissue Engineering of Blood Vessels. , 2019, , 413-413.		6
8	Antishear Stress Bionic Carbon Nanotube Mesh Coating with Intracellular Controlled Drug Delivery Constructing Smallâ€Ðiameter Tissue–Engineered Vascular Grafts. Advanced Healthcare Materials, 2018, 7, e1800026.	7.6	24
9	The promotion of tissue engineering blood vessel patency by CGS21680 through regulating proâ€inflammatory activities of endothelial progenitor cell. Journal of Biomedical Materials Research - Part A, 2018, 106, 2634-2642.	4.0	5
10	A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly. Biomaterials, 2017, 127, 117-131.	11.4	62
11	Netrinâ€1 Promotes Inflammation Resolution to Achieve Endothelialization of Smallâ€Diameter Tissue Engineering Blood Vessels by Improving Endothelial Progenitor Cells Function In Situ. Advanced Science, 2017, 4, 1700278.	11.2	26
12	Construction of Antithrombotic Tissue-Engineered Blood Vessel <i>via</i> Reduced Graphene Oxide Based Dual-Enzyme Biomimetic Cascade. ACS Nano, 2017, 11, 10964-10973.	14.6	28
13	Novel A 20 -gene-eluting stent inhibits carotid artery restenosis in a porcine model. Drug Design, Development and Therapy, 2016, Volume 10, 2341-2351.	4.3	5
14	Erythropoietin-activated mesenchymal stem cells promote healing ulcers by improving microenvironment. Journal of Surgical Research, 2016, 205, 464-473.	1.6	30
15	Regulation of Cellular Response Pattern to Phosphorus Ion is a New Target for the Design of Tissueâ€Engineered Blood Vessel. Advanced Healthcare Materials, 2015, 4, 1004-1008.	7.6	7
16	Construction of an Aptamer–SiRNA Chimera-Modified Tissue-Engineered Blood Vessel for Cell-Type-Specific Capture and Delivery. ACS Nano, 2015, 9, 6069-6076.	14.6	29
17	Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial. Scientific Reports, 2015, 5, 11594.	3.3	15
18	Maintaining Moderate Platelet Aggregation and Improving Metabolism of Endothelial Progenitor Cells Increase the Patency Rate of Tissue-Engineered Blood Vessels. Tissue Engineering - Part A, 2015, 21, 2001-2012.	3.1	10

Wen Zeng

#	Article	IF	CITATIONS
19	The Construction of Tissueâ€Engineered Blood Vessels Crosslinked with Adenosineâ€Loaded Chitosan/βâ€Cyclodextrin Nanoparticles using a Layerâ€byâ€Layer Assembly Method. Advanced Healthcare Materials, 2014, 3, 1776-1781.	7.6	13
20	The use of BDNF to enhance the patency rate of small-diameter tissue-engineered blood vessels through stem cell homing mechanisms. Biomaterials, 2012, 33, 473-484.	11.4	57
21	The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissue-engineered blood vessels. Biomaterials, 2010, 31, 1636-1645.	11.4	45
22	A20 overexpression inhibits low shear flow-induced CD14-positive monocyte recruitment to endothelial cells. Biorheology, 2009, 46, 21-30.	0.4	7