Marella de Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/984838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Label-free SERS detection of proteins based on machine learning classification of chemo-structural determinants. Analyst, The, 2021, 146, 674-682.	3.5	38
2	Cost Effective Silver Nanowire-Decorated Graphene Paper for Drop-On SERS Biodetection. Nanomaterials, 2021, 11, 1495.	4.1	11
3	Ion-exchanged glass microrods as hybrid SERS/fluorescence substrates for molecular beacon-based DNA detection. Analytical and Bioanalytical Chemistry, 2021, 413, 6171-6182.	3.7	4
4	Label-free SERS detection of proteins based on machine learning classification of chemostructural determinants. , 2021, , .		1
5	Nanoscopic insights into the surface conformation of neurotoxic amyloid \hat{l}^2 oligomers. RSC Advances, 2020, 10, 21907-21913.	3.6	19
6	Hollow core photonic crystal fiber-assisted Raman spectroscopy as a tool for the detection of Alzheimer's disease biomarkers. Journal of Biomedical Optics, 2020, 25, 1.	2.6	15
7	A SERS affinity bioassay based on ion-exchanged glass microrods (Conference Presentation). , 2020, , .		0
8	Seeding variability of different alpha synuclein strains in synucleinopathies. Annals of Neurology, 2019, 85, 691-703.	5.3	85
9	Spotâ€on SERS Detection of Biomolecules with Laserâ€Patterned Dot Arrays of Assembled Silver Nanowires. ChemNanoMat, 2019, 5, 1036-1043.	2.8	21
10	Biosensor surface functionalization by a simple photochemical immobilization of antibodies: experimental characterization by mass spectrometry and surface enhanced Raman spectroscopy. Analyst, The, 2019, 144, 6871-6880.	3.5	38
11	Fiber-enhanced Raman spectroscopy as a tool for an early detection of Alzheimer's disease biomarkers. , 2019, , .		1
12	Triggering molecular assembly at the mesoscale for advanced Raman detection of proteins in liquid. Scientific Reports, 2018, 8, 1033.	3.3	13
13	Nanoscale Discrimination between Toxic and Nontoxic Protein Misfolded Oligomers with Tipâ€Enhanced Raman Spectroscopy. Small, 2018, 14, e1800890.	10.0	35
14	Plasmon-enhanced Raman detection of body-fluid components. , 2018, , .		0
15	Photostability of Gold Nanorods upon Endosomal Confinement in Cultured Cells. Journal of Physical Chemistry C, 2017, 121, 6393-6400.	3.1	22
16	Site-Selective Surface-Enhanced Raman Detection of Proteins. ACS Nano, 2017, 11, 918-926.	14.6	85
17	Optically induced microbubbles around gold nanorods: the influence of particle parameters and environment on cavitation threshold. , 2016, , .		0
18	Controlled Veiling of Silver Nanocubes with Graphene Oxide for Improved Surface-Enhanced Raman Scattering Detection. ACS Applied Materials & Interfaces, 2016, 8, 2628-2634.	8.0	32

Marella de Angelis

#	Article	IF	CITATIONS
19	Investigation on laser-assisted tissue repair with NIR millisecond-long light pulses and Indocyanine Green-biopolymeric patches. , 2016, , .		Ο
20	Feasibility of plasmonic cellular vehicles for photoacoustic applications. , 2015, , .		0
21	Influence of gold nanorods environment on photoacoustic conversion. , 2015, , .		1
22	The influence of cellular uptake on gold nanorods photostability and photoacoustic conversion efficiency. , 2015, , .		2
23	Opportunities with light-responsive plasmonic nanomaterials and graphene in therapy and sensing. , 2015, , .		Ο
24	Bidimensional assemblies of nonspherical gold nanoparticles for SERS analysis of biomolecules. , 2015, , .		0
25	Concave gold nanocube assemblies as nanotraps for surface-enhanced Raman scattering-based detection of proteins. Nanoscale, 2015, 7, 3474-3480.	5.6	43
26	Size Affects the Stability of the Photoacoustic Conversion of Gold Nanorods. Journal of Physical Chemistry C, 2014, 118, 16140-16146.	3.1	45
27	Optimization of the photoacoustic conversion of gold nanorods embedded in biopolymeric scaffolds. , 2013, , .		1
28	Photoacoustic stability of gold nanorods embedded in biopolymeric scaffolds. , 2013, , .		0
29	Hybrid nanocomposite films for laserâ€activated tissue bonding. Journal of Biophotonics, 2012, 5, 868-877.	2.3	37
30	Thermal Transitions of Fibrillar Collagen Unveiled by Second-Harmonic Generation Microscopy of Corneal Stroma. Biophysical Journal, 2012, 103, 1179-1187.	0.5	46
31	A Compact Atom Interferometer for Future Space Missions. Microgravity Science and Technology, 2010, 22, 551-561.	1.4	48
32	Investigation of optical birefringence at ferroelectric domain wall in LiNbO3 by phase-shift polarimetry. Applied Physics Letters, 2006, 88, 151918.	3.3	9
33	On the origin of internal field in Lithium Niobate crystals directly observed by digital holography. Optics Express, 2005, 13, 5416.	3.4	35
34	Investigation of internal electric field in LiNbO 3 crystal with two anti-parallel ferroelectric domains by interferometric technique. , 2004, 5560, 9.		2
35	Investigation of electric internal field in congruent LiNbO3 by electro-optic effect. Applied Physics Letters, 2004, 85, 5652-5654.	3.3	20
36	In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography. Optics Express, 2004, 12, 1832.	3.4	67

#	Article	IF	CITATIONS
37	Real-time phase-contrast analysis of domain switching in lithium niobate by digital holography. , 2004, , .		4
38	Interferometric analysis of a lithium niobate with engineering reversed domains. , 2003, , .		6
39	<title>Two-beam shearing interferometric method for testing a conical lens</title> ., 2001, 4398, 225.		Ο
40	<title>Fringe analysis of moire interferometry for studying micromechanical behavior of composite materials</title> . , 1999, , .		0
41	Analysis of moiré fringes for measuring the focal length of lenses. Optics and Lasers in Engineering, 1998, 30, 279-286.	3.8	15
42	Narrow linewidth visible diode laser at 690 nm: spectroscopy of the SrI intercombination line. , 1993, 1837, 366.		0