
Peter Staeheli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/984734/publications.pdf Version: 2024-02-01

DETED STAFHELL

#	Article	IF	CITATIONS
1	Selective Janus kinase inhibition preserves interferon-λ–mediated antiviral responses. Science Immunology, 2021, 6, .	5.6	16
2	Rare variant <i>MX1</i> alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science, 2021, 373, 918-922.	6.0	41
3	Rotavirus susceptibility of antibiotic-treated mice ascribed to diminished expression of interleukin-22. PLoS ONE, 2021, 16, e0247738.	1.1	9
4	Interferon-λ Improves the Efficacy of Intranasally or Rectally Administered Influenza Subunit Vaccines by a Thymic Stromal Lymphopoietin-Dependent Mechanism. Frontiers in Immunology, 2021, 12, 749325.	2.2	5
5	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
6	Interferon Lambda Regulates Cellular and Humoral Immunity in Pristane-Induced Lupus. International Journal of Molecular Sciences, 2021, 22, 11747.	1.8	4
7	Microbiota-dependent increase in δ-valerobetaine alters neuronal function and is responsible for age-related cognitive decline. Nature Aging, 2021, 1, 1127-1136.	5.3	20
8	Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 119.	2.4	75
9	Interferon-λ Receptor Expression: Novel Reporter Mouse Reveals Within- and Cross-Tissue Heterogeneity. Journal of Interferon and Cytokine Research, 2020, 40, 292-300.	0.5	3
10	Prevention of influenza virus infection and transmission by intranasal administration of a porous maltodextrin nanoparticle-formulated vaccine. International Journal of Pharmaceutics, 2020, 582, 119348.	2.6	7
11	A dual role for hepatocyte-intrinsic canonical NF-κB signalingÂinÂvirus control. Journal of Hepatology, 2020, 72, 960-975.	1.8	18
12	Antagonism of interferon signaling by fibroblast growth factors promotes viral replication. EMBO Molecular Medicine, 2020, 12, e11793.	3.3	13
13	Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Reports, 2019, 28, 245-256.e4.	2.9	208
14	Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Science Immunology, 2019, 4, .	5.6	39
15	Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines. Journal of Virology, 2019, 93, .	1.5	25
16	Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nature Reviews Immunology, 2019, 19, 614-625.	10.6	181
17	Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nature Immunology, 2019, 20, 593-601.	7.0	68
18	The alternative cap-binding complex is required for antiviral defense in vivo. PLoS Pathogens, 2019, 15, e1008155.	2.1	19

Peter Staeheli

#	Article	IF	CITATIONS
19	The alternative cap-binding complex is required for antiviral defense in vivo. , 2019, 15, e1008155.		Ο
20	The alternative cap-binding complex is required for antiviral defense in vivo. , 2019, 15, e1008155.		0
21	The alternative cap-binding complex is required for antiviral defense in vivo. , 2019, 15, e1008155.		Ο
22	Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nature Immunology, 2018, 19, 130-140.	7.0	239
23	Human MX2/MxB: a Potent Interferon-Induced Postentry Inhibitor of Herpesviruses and HIV-1. Journal of Virology, 2018, 92, .	1.5	37
24	Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Frontiers in Immunology, 2018, 9, 2060.	2.2	25
25	Passively transferred M2e-specific monoclonal antibody reduces influenza A virus transmission in mice. Antiviral Research, 2018, 158, 244-254.	1.9	17
26	IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. ELife, 2018, 7, .	2.8	198
27	The Discovery of the Antiviral Resistance Gene <i>Mx</i> : A Story of Great Ideas, Great Failures, and Some Success. Annual Review of Virology, 2018, 5, 33-51.	3.0	32
28	Viral vector vaccines protect cockatiels from inflammatory lesions after heterologous parrot bornavirus 2 challenge infection. Vaccine, 2017, 35, 557-563.	1.7	20
29	Hierarchical and Redundant Roles of Activating FcγRs in Protection against Influenza Disease by M2e-Specific IgG1 and IgG2a Antibodies. Journal of Virology, 2017, 91, .	1.5	65
30	Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nature Communications, 2017, 8, .	5.8	103
31	In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein. Journal of Experimental Medicine, 2017, 214, 1239-1248.	4.2	44
32	Epithelial Barriers in Murine Skin during Herpes Simplex Virus 1 Infection: The Role of Tight Junction Formation. Journal of Investigative Dermatology, 2017, 137, 884-893.	0.3	24
33	License to kill: IFN-λ regulates antifungal activity of neutrophils. Science Immunology, 2017, 2, .	5.6	6
34	RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial Superinfection. Molecular Therapy, 2017, 25, 2093-2103.	3.7	26
35	Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science, 2016, 352, 463-466.	6.0	210
36	Influenza Virus Susceptibility of Wild-Derived CAST/EiJ Mice Results from Two Amino Acid Changes in the MX1 Restriction Factor. Journal of Virology, 2016, 90, 10682-10692.	1.5	10

PETER STAEHELI

#	Article	IF	CITATIONS
37	Viral vector vaccines expressing nucleoprotein and phosphoprotein genes of avian bornaviruses ameliorate homologous challenge infections in cockatiels and common canaries. Scientific Reports, 2016, 6, 36840.	1.6	19
38	Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain. Journal of Virology, 2016, 90, 2031-2038.	1.5	77
39	Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells. Journal of General Virology, 2016, 97, 2096-2103.	1.3	22
40	Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nature Immunology, 2015, 16, 698-707.	7.0	252
41	Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 2015, 18, 965-977.	7.1	2,340
42	Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 2015, 23, 154-163.	3.5	378
43	Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nature Communications, 2015, 6, 7090.	5.8	64
44	The Avian-Origin PB1 Gene Segment Facilitated Replication and Transmissibility of the H3N2/1968 Pandemic Influenza Virus. Journal of Virology, 2015, 89, 4170-4179.	1.5	33
45	Control of Hepatitis C Virus Replication in Mouse Liver-Derived Cells by MAVS-Dependent Production of Type I and Type III Interferons. Journal of Virology, 2015, 89, 3833-3845.	1.5	23
46	Leukocyte-Derived IFN-α/β and Epithelial IFN-λ Constitute a Compartmentalized Mucosal Defense System that Restricts Enteric Virus Infections. PLoS Pathogens, 2015, 11, e1004782.	2.1	172
47	Functional Comparison of Mx1 from Two Different Mouse Species Reveals the Involvement of Loop L4 in the Antiviral Activity against Influenza A Viruses. Journal of Virology, 2015, 89, 10879-10890.	1.5	29
48	Human but Not Mouse Hepatocytes Respond to Interferon-Lambda In Vivo. PLoS ONE, 2014, 9, e87906.	1.1	45
49	Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nature Communications, 2014, 5, 5645.	5.8	55
50	Impact of antigenic diversity on laboratory diagnosis of Avian bornavirus infections in birds. Journal of Veterinary Diagnostic Investigation, 2014, 26, 769-777.	0.5	21
51	STAT1β Is Not Dominant Negative and Is Capable of Contributing to Gamma Interferon-Dependent Innate Immunity. Molecular and Cellular Biology, 2014, 34, 2235-2248.	1.1	34
52	Discovery of a new avian bornavirus genotype in estrildid finches (Estrildidae) in Germany. Veterinary Microbiology, 2014, 168, 318-323.	0.8	33
53	No contact transmission of avian bornavirus in experimentally infected cockatiels (Nymphicus) Tj ETQq1 1 0.78 172, 146-156.	4314 rgBT 0.8	/Overlock 10 39
54	Concomitant TLR/RLH Signaling of Radioresistant and Radiosensitive Cells Is Essential for Protection against Vesicular Stomatitis Virus Infection. Journal of Immunology, 2014, 193, 3045-3054.	0.4	26

Peter Staeheli

#	Article	IF	CITATIONS
55	Antiviral Activity of Lambda Interferon in Chickens. Journal of Virology, 2014, 88, 2835-2843.	1.5	61
56	S. mansoni Bolsters Anti-Viral Immunity in the Murine Respiratory Tract. PLoS ONE, 2014, 9, e112469.	1.1	43
57	The Human Interferon-Induced MxA Protein Inhibits Early Stages of Influenza A Virus Infection by Retaining the Incoming Viral Genome in the Cytoplasm. Journal of Virology, 2013, 87, 13053-13058.	1.5	98
58	Type I and Type III Interferons Drive Redundant Amplification Loops to Induce a Transcriptional Signature in Influenza-Infected Airway Epithelia. PLoS Pathogens, 2013, 9, e1003773.	2.1	229
59	Plasmacytoid dendritic cells and Toll-like receptor 7-dependent signalling promote efficient protection of mice against highly virulent influenza A virus. Journal of General Virology, 2012, 93, 555-559.	1.3	35
60	Priming of Natural Killer Cells by Nonmucosal Mononuclear Phagocytes Requires Instructive Signals from Commensal Microbiota. Immunity, 2012, 37, 171-186.	6.6	399
61	Altered receptor specificity and fusion activity of the haemagglutinin contribute to high virulence of a mouse-adapted influenza A virus. Journal of General Virology, 2012, 93, 970-979.	1.3	44
62	Combined action of type I and type III interferon restricts initial replication of severe acute respiratory syndrome coronavirus in the lung but fails to inhibit systemic virus spread. Journal of General Virology, 2012, 93, 2601-2605.	1.3	56
63	IFN-λ determines the intestinal epithelial antiviral host defense. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7944-7949.	3.3	369
64	Avian Bornavirus Associated with Fatal Disease in Psittacine Birds. Journal of Virology, 2010, 84, 6269-6275.	1.5	68
65	Lambda Interferon Renders Epithelial Cells of the Respiratory and Gastrointestinal Tracts Resistant to Viral Infections. Journal of Virology, 2010, 84, 5670-5677.	1.5	369
66	What Have We Learned from the IL28 Receptor Knockout Mouse?. Journal of Interferon and Cytokine Research, 2010, 30, 579-584.	0.5	24
67	Second-site mutations in Borna disease virus overexpressing viral accessory protein X. Journal of General Virology, 2009, 90, 1932-1936.	1.3	3
68	Strong interferon-inducing capacity of a highly virulent variant of influenza A virus strain PR8 with deletions in the NS1 gene. Journal of General Virology, 2009, 90, 2990-2994.	1.3	49
69	Viral accessory protein X stimulates the assembly of functional Borna disease virus polymerase complexes. Journal of General Virology, 2008, 89, 1442-1445.	1.3	16
70	Interferon-λ Contributes to Innate Immunity of Mice against Influenza A Virus but Not against Hepatotropic Viruses. PLoS Pathogens, 2008, 4, e1000151.	2.1	276
71	IFN-Lambda (IFN-λ) Is Expressed in a Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo. PLoS Pathogens, 2008, 4, e1000017.	2.1	672
72	An Important Role for Type III Interferon (IFN-λ/IL-28) in TLR-Induced Antiviral Activity. Journal of Immunology, 2008, 180, 2474-2485.	0.4	387

PETER STAEHELI

#	Article	IF	CITATIONS
73	Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6806-6811.	3.3	178
74	Enhanced polymerase activity confers replication competence of Borna disease virus in mice. Journal of General Virology, 2007, 88, 3130-3132.	1.3	10
75	The <i>Mx1</i> Gene Protects Mice against the Pandemic 1918 and Highly Lethal Human H5N1 Influenza Viruses. Journal of Virology, 2007, 81, 10818-10821.	1.5	161
76	Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. Journal of General Virology, 2007, 88, 1403-1409.	1.3	87
77	Vaccine-induced protection against Borna disease in wild-type and perforin-deficient mice. Journal of General Virology, 2005, 86, 399-403.	1.3	19
78	Immunization with dendritic cells can break immunological ignorance toward a persisting virus in the central nervous system and induce partial protection against intracerebral viral challenge. Journal of General Virology, 2004, 85, 2379-2387.	1.3	18
79	Nomenclature of Avian Interferon Proteins. Journal of Interferon and Cytokine Research, 2001, 21, 547-549.	0.5	32
80	Bornaviruses. Virus Research, 2001, 82, 55-59.	1.1	7
81	Conservation of coding potential and terminal sequences in four different isolates of Borna disease virus. Journal of General Virology, 2001, 82, 2681-2690.	1.3	49
82	lsolation and Characterization of a New Subtype of Borna Disease Virus. Journal of Virology, 2000, 74, 5655-5658.	1.5	89
83	Sequence Variability of Borna Disease Virus: Resistance to Superinfection May Contribute to High Genome Stability in Persistently Infected Cells. Journal of Virology, 2000, 74, 7878-7883.	1.5	38
84	300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genetics, 1999, 21, 258-259.	9.4	330
85	Mx Proteins: Gtpases Involved in the Interferonâ€Induced Antiviral State. Novartis Foundation Symposium, 1993, 176, 233-247.	1.2	32
86	Influenza Virus Resistance of Wild Mice: Wild-Type and Mutant Mx Alleles Occur at Comparable Frequencies. Journal of Interferon Research, 1987, 7, 647-656.	1.2	78