
Joerg Tessmar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/984694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioink Platform Utilizing Dualâ€Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells. Macromolecular Bioscience, 2022, 22, e2100331.	2.1	12
2	Processing of Poly(lacticâ€ <i>co</i> â€glycolic acid) Microfibers via Melt Electrowriting. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	6
3	Tethered TGF-β1 in a Hyaluronic Acid-Based Bioink for Bioprinting Cartilaginous Tissues. International Journal of Molecular Sciences, 2022, 23, 924.	1.8	26
4	Covalently Crossâ€Linked Pig Gastric Mucin Hydrogels Prepared by Radicalâ€Based Chainâ€Growth and Thiolâ€ene Mechanisms. Macromolecular Bioscience, 2022, 22, e2100274.	2.1	4
5	Oxidized Hyaluronic Acid-Gelatin-Based Hydrogels for Tissue Engineering and Soft Tissue Mimicking. Tissue Engineering - Part C: Methods, 2022, 28, 301-313.	1.1	7
6	Targeted Printing of Cells: Evaluation of ADA-PEG Bioinks for Drop on Demand Approaches. Gels, 2022, 8, 206.	2.1	6
7	Appreciating the First Line of the Human Innate Immune Defense: A Strategy to Model and Alleviate the Neutrophil Elastaseâ€Mediated Attack toward Bioactivated Biomaterials. Small, 2021, 17, e2007551.	5.2	12
8	Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Cells, 2021, 10, 803.	1.8	46
9	Advanced ADA-GEL bioink for bioprinted artificial cancer models. Bioprinting, 2021, 23, e00145.	2.9	13
10	TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid. Molecules, 2021, 26, 5963.	1.7	3
11	Differential Production of Cartilage ECM in 3D Agarose Constructs by Equine Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2020, 21, 7071.	1.8	11
12	Hyaluronic Acidâ€Based Bioink Composition Enabling 3D Bioprinting and Improving Quality of Deposited Cartilaginous Extracellular Matrix. Advanced Healthcare Materials, 2020, 9, e2000737.	3.9	81
13	Comparison of Hydrogels for the Development of Well-Defined 3D Cancer Models of Breast Cancer and Melanoma. Cancers, 2020, 12, 2320.	1.7	22
14	Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication, 2020, 12, 045004.	3.7	81
15	In Situ Polymer Analogue Generation of Azlactone Functions at Poly(oxazoline)s for Peptide Conjugation. Macromolecular Chemistry and Physics, 2020, 221, 1900500.	1.1	4
16	Rheological analysis of the interplay between the molecular weight and concentration of hyaluronic acid in formulations of supramolecular HA/FmocFF hybrid hydrogels. Polymer Journal, 2020, 52, 1007-1012.	1.3	13
17	Catechol-modified poly(oxazoline)s with tunable degradability facilitate cell invasion and lateral cartilage integration. Journal of Industrial and Engineering Chemistry, 2019, 80, 757-769.	2.9	18
18	Permanent Hydrophilization and Generic Bioactivation of Melt Electrowritten Scaffolds. Advanced Healthcare Materials, 2019, 8, e1801544.	3.9	23

#	Article	IF	CITATIONS
19	Tuning the Product Spectrum of a Glycoside Hydrolase Enzyme by a Combination of Siteâ€Directed Mutagenesis and Tyrosineâ€Specific Chemical Modification. Chemistry - A European Journal, 2019, 25, 6533-6541.	1.7	13
20	Influence of charged groups on the cross-linking efficiency and release of guest molecules from thiol–ene cross-linked poly(2-oxazoline) hydrogels. Journal of Materials Chemistry B, 2019, 7, 1782-1794.	2.9	12
21	Tough and Elastic α-Tricalcium Phosphate Cement Composites with Degradable PEG-Based Cross-Linker. Materials, 2019, 12, 53.	1.3	3
22	Evaluation of Hydrogels Based on Oxidized Hyaluronic Acid for Bioprinting. Gels, 2018, 4, 82.	2.1	34
23	TGFâ€Î²1â€Modified Hyaluronic Acid/Poly(glycidol) Hydrogels for Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Macromolecular Bioscience, 2018, 18, e1700390.	2.1	25
24	Product-oriented chemical surface modification of a levansucrase (SacB) <i>via</i> an ene-type reaction. Chemical Science, 2018, 9, 5312-5321.	3.7	19
25	Highly flexible and degradable dual setting systems based on PEC-hydrogels and brushite cement. Acta Biomaterialia, 2018, 79, 182-201.	4.1	14
26	Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication. Annals of Biomedical Engineering, 2017, 45, 273-285.	1.3	86
27	Live-cell super-resolution imaging of intrinsically fast moving flagellates. Journal Physics D: Applied Physics, 2017, 50, 074004.	1.3	3
28	Thiolâ€ene Cross‣inkable Hydrogels as Bioinks for Biofabrication. Macromolecular Symposia, 2017, 372, 102-107.	0.4	13
29	Thiol–Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies. Advanced Materials, 2017, 29, 1703404.	11.1	248
30	Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(<i>ε</i> -caprolactone) for MSC chondrogenesis. Biofabrication, 2017, 9, 044108.	3.7	119
31	Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles. Materials Letters, 2017, 205, 257-260.	1.3	39
32	Application of Linear and Branched Poly(Ethylene Glycol)â€Poly(Lactide) Block Copolymers for the Preparation of Films and Solution Electrospun Meshes. Macromolecular Bioscience, 2016, 16, 441-450.	2.1	4
33	Bilateral <scp>PLA</scp> /alginate membranes for the prevention of postsurgical adhesions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1563-1570.	1.6	13
34	Multivalent targeting of AT1receptors with angiotensin II-functionalized nanoparticles. Journal of Drug Targeting, 2015, 23, 681-689.	2.1	21
35	Biodistribution of Quantum Dots in the Kidney After Intravenous Injection. Journal of Nanoscience and Nanotechnology, 2014, 14, 3313-3319.	0.9	12
36	Self-Assembling Colloidal System for the Ocular Administration of Cyclosporine A. Cornea, 2014, 33, 77-81.	0.9	28

JOERG TESSMAR

#	Article	IF	CITATIONS
37	Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 248-252.	1.3	4
38	Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, 2014, 6, 015006.	3.7	180
39	Developing an in situ nanosuspension: A novel approach towards the efficient administration of poorly soluble drugs at the anterior eye. European Journal of Pharmaceutical Sciences, 2013, 50, 385-392.	1.9	25
40	Preparation of wellâ€defined calcium crossâ€linked alginate films for the prevention of surgical adhesions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 826-839.	1.6	11
41	Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6115-6120.	3.3	57
42	Kidney Podocytes as Specific Targets for cyclo(RGDfC)â€Modified Nanoparticles. Small, 2012, 8, 3368-3375.	5.2	42
43	Heterobifunctional Poly(ethylene glycol) Derivatives for the Surface Modification of Gold Nanoparticles Toward Bone Mineral Targeting. Macromolecular Bioscience, 2012, 12, 1124-1136.	2.1	11
44	Cyclodextrin based hydrogels: Inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer, 2011, 52, 4806-4812.	1.8	32
45	Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics. Journal of Controlled Release, 2010, 142, 221-228.	4.8	221
46	Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering. Biomaterials, 2010, 31, 3957-3966.	5.7	82
47	G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10667-10672.	3.3	51
48	Biodegradable Hydrogels for Time-Controlled Release of Tethered Peptides or Proteins. Biomacromolecules, 2010, 11, 496-504.	2.6	41
49	Size-dependent release of fluorescent macromolecules and nanoparticles from radically cross-linked hydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 184-192.	2.0	22
50	Ascorbic Acid Enhances Adipogenesis of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells Tissues Organs, 2009, 189, 373-381.	1.3	15
51	Hydrogels for Tissue Engineering. , 2009, , 495-517.		8
52	Enhanced bone morphogenetic proteinâ€⊋ performance on hydroxyapatite ceramic surfaces. Journal of Biomedical Materials Research - Part A, 2009, 90A, 959-971.	2.1	48
53	FACS as useful tool to study distinct hyalocyte populations. Experimental Eye Research, 2009, 88, 995-999.	1.2	12
54	Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1. Graefe's Archive for Clinical and Experimental Ophthalmology, 2008, 246, 1275-1284.	1.0	18

JOERG TESSMAR

#	Article	IF	CITATIONS
55	Polymer coating of quantum dots – A powerful tool toward diagnostics and sensorics. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 138-152.	2.0	169
56	<i>In Vivo</i> Development and Long-Term Survival of Engineered Adipose Tissue Depend on <i>In Vitro</i> Precultivation Strategy. Tissue Engineering - Part A, 2008, 14, 275-284.	1.6	45
57	Ascorbic Acid Modulates Proliferation and Extracellular Matrix Accumulation of Hyalocytes. Tissue Engineering, 2007, 13, 1281-1289.	4.9	23
58	In VitroandIn VivoCartilage Engineering Using a Combination of Chondrocyte-Seeded Long-Term Stable Fibrin Gels and Polycaprolactone-Based Polyurethane Scaffolds. Tissue Engineering, 2007, 13, 2207-2218.	4.9	117
59	Poly(Ethylene Clycol) Based Hydrogels for Intraocular Applications. Advanced Engineering Materials, 2007, 9, 1141-1149.	1.6	38
60	Customized PEG-Derived Copolymers for Tissue-Engineering Applications. Macromolecular Bioscience, 2007, 7, 23-39.	2.1	183
61	Influence of wettability and surface activity on release behavior of hydrophilic substances from lipid matrices. Journal of Controlled Release, 2007, 119, 173-181.	4.8	33
62	Matrices and scaffolds for protein delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59, 274-291.	6.6	320
63	Confocal Microscopy for the Elucidation of Mass Transport Mechanisms Involved in Protein Release from Lipid-based Matrices. Pharmaceutical Research, 2007, 24, 1325-1335.	1.7	19
64	Influence of electron irradiation on the crystallisation, molecular weight and mechanical properties of poly-(R)-3-hydroxybutyrate. Journal of Materials Science, 2007, 42, 3732-3738.	1.7	14
65	Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides. Biomaterials, 2005, 26, 2333-2341.	5.7	68
66	PEGylation Does Not Impair Insulin Efficacy in Three-Dimensional Cartilage Culture: An Investigation toward Biomimetic Polymers. Tissue Engineering, 2004, 10, 429-440.	4.9	16
67	Transforming growth factor-β1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. Journal of Controlled Release, 2004, 94, 101-114.	4.8	192
68	Basic fibroblast growth factor enhances PPARÎ ³ ligand-induced adipogenesis of mesenchymal stem cells. FEBS Letters, 2004, 577, 277-283.	1.3	96
69	Biomimetic polymers in pharmaceutical and biomedical sciences. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 385-407.	2.0	161
70	Toward the Development of Biomimetic Polymers by Protein Immobilization: PEGylation of Insulin as a Model Reaction. Tissue Engineering, 2004, 10, 441-453.	4.9	18
71	The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces. Biomaterials, 2003, 24, 4475-4486.	5.7	52
72	Towards biomimetic scaffolds: Anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers. Biomaterials, 2003, 24, 4459-4473.	5.7	56

JOERG TESSMAR

#	Article	IF	CITATIONS
73	Poly(D,L-lactic acid)-Poly(ethylene glycol)-Monomethyl Ether Diblock Copolymers Control Adhesion and Osteoblastic Differentiation of Marrow Stromal Cells. Tissue Engineering, 2003, 9, 71-84.	4.9	82
74	The effect of poly(ethylene glycol)–poly(d,l-lactic acid) diblock copolymers on peptide acylation. Journal of Controlled Release, 2002, 80, 157-168.	4.8	48
75	Polyanhydride degradation and erosion. Advanced Drug Delivery Reviews, 2002, 54, 911-931.	6.6	277
76	Does UV irradiation affect polymer properties relevant to tissue engineering?. Surface Science, 2001, 491, 333-345.	0.8	83
77	Biodegradable poly(d,l-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Biomaterials, 2000, 21, 2361-2370.	5.7	166