List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/984652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Cleaning Particle Coating with Antireflection Properties. Chemistry of Materials, 2005, 17, 696-700.	3.2	337
2	High‥ield Electrochemical Production of Formaldehyde from CO ₂ and Seawater. Angewandte Chemie - International Edition, 2014, 53, 871-874.	7.2	333
3	Conductive diamond: synthesis, properties, and electrochemical applications. Chemical Society Reviews, 2019, 48, 157-204.	18.7	333
4	Fabrication, Characterization, and Application of Boron-Doped Diamond Microelectrodes for in Vivo Dopamine Detection. Analytical Chemistry, 2007, 79, 8608-8615.	3.2	223
5	Evidence of the Chemical Uniaxial Strain Effect on Electrical Conductivity in the Spin-Crossover Conducting Molecular System: [Fe ^{III} (qnal) ₂][Pd(dmit) ₂] ₅ ·Acetone. Journal of the American Chemical Society, 2008, 130, 6688-6689	6.6	156
6	Electrochemical Oxidation of Oxalic Acid at Highly Boron-Doped Diamond Electrodes. Analytical Chemistry, 2006, 78, 3467-3471.	3.2	132
7	Electrical Conductivity Modulation Coupled to a High-Spinâ^'Low-Spin Conversion in the Molecular System [FeIII(qsal)2][Ni(dmit)2]3·CH3CN·H2O. Inorganic Chemistry, 2006, 45, 5739-5741.	1.9	132
8	Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 2008, 612, 29-36.	1.9	128
9	Bimetallic Pt–Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosensors and Bioelectronics, 2017, 98, 76-82.	5.3	127
10	A Novel LIESST Iron(II) Complex Exhibiting a High Relaxation Temperature. Inorganic Chemistry, 2001, 40, 3240-3242.	1.9	121
11	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie - International Edition, 2018, 57, 2639-2643.	7.2	121
12	Diamond electrodes for electrochemical analysis. Journal of Applied Electrochemistry, 2010, 40, 1807-1816.	1.5	119
13	Diamond electrodes: Diversity and maturity. MRS Bulletin, 2014, 39, 525-532.	1.7	106
14	Co-reactant-on-Demand ECL: Electrogenerated Chemiluminescence by the in Situ Production of S ₂ O ₈ ^{2–} at Boron-Doped Diamond Electrodes. Journal of the American Chemical Society, 2016, 138, 15636-15641.	6.6	99
15	Anodic Oxidation on a Boronâ€Doped Diamond Electrode Mediated by Methoxy Radicals. Angewandte Chemie - International Edition, 2012, 51, 5443-5446.	7.2	95
16	Photoswitchable Magnetic Films:Â Prussian Blue Intercalated in Langmuirâ^'Blodgett Films Consisting of an Amphiphilic Azobenzene and a Clay Mineral. Chemistry of Materials, 2004, 16, 1195-1201.	3.2	94
17	Tailored design of boron-doped diamond electrodes for various electrochemical applications with boron-doping level and sp ² -bonded carbon impurities. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2709-2717.	0.8	93
18	Giant electric double-layer capacitance of heavily boron-doped diamond electrode. Diamond and Related Materials, 2010, 19, 772-777.	1.8	81

#	Article	IF	CITATIONS
19	Switchable Product Selectivity in the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes. Journal of the American Chemical Society, 2019, 141, 7414-7420.	6.6	81
20	Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer, 2017, 20, 341-349.	2.7	79
21	Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chemical Communications, 2017, 53, 1338-1347.	2.2	78
22	Reversible Phototuning of Ferromagnetism at Au–S Interfaces at Room Temperature. Angewandte Chemie - International Edition, 2008, 47, 160-163.	7.2	72
23	Synergistic Spin Transition between Spin Crossover and Spinâ€Peierlsâ€like Singlet Formation in the Halogenâ€Bonded Molecular Hybrid System: [Fe(lqsal) ₂][Ni(dmit) ₂]â <ch<sub>3CNâ<h<sub>2O. Angewandte Chemie - International Edition. 2014. 53. 1983-1986.</h<sub></ch<sub>	7.2	71
24	Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosensors and Bioelectronics, 2016, 75, 365-374.	5.3	71
25	Reversible Photoswitching of Ferromagnetic FePt Nanoparticles at Room Temperature. Journal of the American Chemical Society, 2007, 129, 5538-5543.	6.6	70
26	Electrogenerated Chemiluminescence by in Situ Production of Coreactant Hydrogen Peroxide in Carbonate Aqueous Solution at a Boron-Doped Diamond Electrode. Journal of the American Chemical Society, 2020, 142, 1518-1525.	6.6	70
27	A microsensing system for the in vivo real-time detection of local drug kinetics. Nature Biomedical Engineering, 2017, 1, 654-666.	11.6	68
28	Unusual Electrochemical Properties of Low-Doped Boron-Doped Diamond Electrodes Containing sp ² Carbon. Journal of the American Chemical Society, 2020, 142, 2310-2316.	6.6	68
29	Construction of Two-Dimensional Arrays Gold Nanoparticles Monolayer onto Boron-Doped Diamond Electrode Surfaces. Chemistry of Materials, 2006, 18, 939-945.	3.2	62
30	Reversible Phototuning of the Large Anisotropic Magnetization at the Interface between a Self-Assembled Photochromic Monolayer and Gold. Journal of the American Chemical Society, 2009, 131, 865-870.	6.6	61
31	Selective production of methanol by the electrochemical reduction of CO ₂ on boron-doped diamond electrodes in aqueous ammonia solution. RSC Advances, 2016, 6, 102214-102217.	1.7	61
32	Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes. Diamond and Related Materials, 2018, 86, 167-172.	1.8	61
33	Development of Amperometric Immunosensor Using Boron-Doped Diamond with Poly(o-aminobenzoic) Tj ETQq	1 1 _{.0.} 784	314 rgBT /O
34	Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction. Analytical Chemistry, 2017, 89, 11341-11347.	3.2	59
35	An electrolyte-free system for ozone generation using heavily boron-doped diamond electrodes. Diamond and Related Materials, 2013, 40, 7-11.	1.8	55
36	Chargeâ€Transfer Phase Transition of a Cyanideâ€Bridged Fe ^{II} /Fe ^{III} Coordination Polymer. Angewandte Chemie - International Edition, 2016, 55, 6047-6050.	7.2	55

#	Article	IF	CITATIONS
37	Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8981-8984.	3.3	54
38	The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochimica Acta, 2018, 266, 414-419.	2.6	54
39	Development of Electrochemical Applications of Boron-Doped Diamond Electrodes. Bulletin of the Chemical Society of Japan, 2018, 91, 1752-1762.	2.0	54
40	Magnetization Increase of Iron Oxide by Photoinduced Aggregation of Spiropyran. Chemistry of Materials, 2003, 15, 8-10.	3.2	52
41	Influence of Surface Orientation on Electrochemical Properties of Boron-Doped Diamond. Journal of Physical Chemistry C, 2019, 123, 5336-5344.	1.5	52
42	The Light-induced Excited Spin State Trapping Effect on Ni(dmit)2Salt with an Fe(III) Spin-crossover Cation: [Fe(qsal)2][Ni(dmit)2]·2CH3CN. Chemistry Letters, 2005, 34, 1240-1241.	0.7	50
43	Plasma etching treatment for surface modification of boron-doped diamond electrodes. Electrochimica Acta, 2007, 52, 3841-3848.	2.6	50
44	Thermoresponsive, Freezing-Resistant Smart Windows with Adjustable Transition Temperature Made from Hydroxypropyl Cellulose and Glycerol. Industrial & Engineering Chemistry Research, 2019, 58, 6424-6428.	1.8	49
45	Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes. Electrochimica Acta, 2009, 54, 2312-2319.	2.6	48
46	Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neuroscience Research, 2011, 71, 49-62.	1.0	48
47	In vivo assessment of cancerous tumors using boron doped diamond microelectrode. Scientific Reports, 2012, 2, 901.	1.6	48
48	Homoepitaxial Single-Crystal Boron-Doped Diamond Electrodes for Electroanalysis. Journal of the Electrochemical Society, 2002, 149, E179.	1.3	47
49	Long-Term Continuous Conversion of CO ₂ to Formic Acid Using Boron-Doped Diamond Electrodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 8108-8112.	3.2	47
50	Development of a Biochemical Oxygen Demand Sensor Using Gold-Modified Boron Doped Diamond Electrodes. Analytical Chemistry, 2012, 84, 9825-9832.	3.2	44
51	The local structure in heavily boron-doped diamond and the effect this has on its electrochemical properties. Carbon, 2018, 137, 333-342.	5.4	44
52	Development of Electrolyte-Free Ozone Sensors Using Boron-Doped Diamond Electrodes. Analytical Chemistry, 2013, 85, 4284-4288.	3.2	42
53	Phase 1 study of sulfasalazine and cisplatin for patients with CD44v-positive gastric cancer refractory to cisplatin (EPOC1407). Gastric Cancer, 2017, 20, 1004-1009.	2.7	42
54	A solvent-directed stereoselective and electrocatalytic synthesis of diisoeugenol. Chemical Communications, 2018, 54, 2771-2773.	2.2	41

#	Article	IF	CITATIONS
55	Sequential Assembly of Phototunable Ferromagnetic Ultrathin Films with Perpendicular Magnetic Anisotropy. Angewandte Chemie - International Edition, 2009, 48, 1754-1757.	7.2	40
56	In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis. Scientific Reports, 2013, 3, 3257.	1.6	39
57	Cathodic pretreatment improves the resistance of boron-doped diamond electrodes to dopamine fouling. Electrochemistry Communications, 2014, 47, 92-95.	2.3	39
58	Direct Determination of Chemical Oxygen Demand by Anodic Decomposition of Organic Compounds at a Diamond Electrode. Analytical Chemistry, 2014, 86, 8066-8072.	3.2	39
59	A New Family of Anionic Fe ^{III} Spin Crossover Complexes Featuring a Weakâ€Field N ₂ O ₄ Coordination Octahedron. Chemistry - A European Journal, 2016, 22, 1253-1257.	1.7	39
60	Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate. Chemosphere, 2018, 210, 524-530.	4.2	39
61	Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. Lab on A Chip, 2020, 20, 852-861.	3.1	39
62	Fabrication and Electrochemical Characterization of Boron-Doped Diamond Microdisc Array Electrodes. Chemistry Letters, 2002, 31, 502-503.	0.7	38
63	Electrogenerated Chemiluminescence with Peroxydisulfate as a Coreactant Using Boron Doped Diamond Electrodes. Analytical Chemistry, 2018, 90, 12959-12963.	3.2	37
64	A Study on Electrolytic Corrosion of Boron-Doped Diamond Electrodes when Decomposing Organic Compounds. ACS Applied Materials & Interfaces, 2016, 8, 28299-28305.	4.0	36
65	Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Advances, 2017, 7, 22510-22514.	1.7	36
66	Influence of Electrolyte on the Electrochemical Reduction of Carbon Dioxide Using Boronâ€Doped Diamond Electrodes. ChemistrySelect, 2018, 3, 10209-10213.	0.7	36
67	Magnetic Vesicles of Amphiphilic Spiropyran Containing Iron Oxide Particles on a Solid State Substrate. Chemistry of Materials, 2003, 15, 4756-4760.	3.2	35
68	Sensitive Electrochemical Detection of Oxalate at a Positively Charged Boronâ€Doped Diamond Surface. Electroanalysis, 2008, 20, 1556-1564.	1.5	35
69	Effect of the doping level on the biological stability of hydrogenated boron doped diamond electrodes. Physical Chemistry Chemical Physics, 2011, 13, 5422.	1.3	35
70	Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sensors, 2020, 5, 431-439.	4.0	35
71	An abrupt spin transition based on short S⋯S contacts in a novel Fe(ii) complex whose ligand contains a 1,3-dithiole ring. Chemical Communications, 2003, , 2374-2375.	2.2	34
72	Photochemical Modification of a Boron-doped Diamond Electrode Surface with Vinylferrocene. Journal of Physical Chemistry C, 2008, 112, 11887-11892.	1.5	34

#	Article	IF	CITATIONS
73	Development of amperometric arsine gas sensor using gold-modified diamond electrodes. Journal of Electroanalytical Chemistry, 2010, 645, 58-63.	1.9	34
74	Electrogenerated Chemiluminescence of Luminol Mediated by Carbonate Electrochemical Oxidation at a Boron-Doped Diamond. Analytical Chemistry, 2021, 93, 2336-2341.	3.2	34
75	Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Scientific Reports, 2016, 6, 32429.	1.6	33
76	Electrochemical reduction of nitrate on boron-doped diamond electrodes: Effects of surface termination and boron-doping level. Chemosphere, 2020, 251, 126364.	4.2	33
77	Nanoscale Reactivity Mapping of a Single-Crystal Boron-Doped Diamond Particle. Analytical Chemistry, 2021, 93, 5831-5838.	3.2	33
78	Stable iridium-modified boron-doped diamond electrode for the application in electrochemical detection of arsenic (III). Materials Chemistry and Physics, 2020, 244, 122723.	2.0	33
79	Surface Termination Effect of Boronâ€Doped Diamond on the Electrochemical Oxidation of Adenosine Phosphate. Electroanalysis, 2016, 28, 177-182.	1.5	32
80	Influence of Doping Level on the Electrochemical Oxidation of Formic Acid on Boron Doped Diamond Electrodes. Journal of the Electrochemical Society, 2011, 158, F183.	1.3	30
81	First Principles Calculation Study on Surfaces and Water Interfaces of Boron-Doped Diamond. Journal of Physical Chemistry C, 2014, 118, 22040-22052.	1.5	29
82	Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests. Talanta, 2015, 134, 136-143.	2.9	28
83	The reduction behavior of free chlorine at boron-doped diamond electrodes. Electrochemistry Communications, 2016, 70, 18-22.	2.3	28
84	Reversible Photocontrollable Magnetic Vesicles Consisting of Azobenzene. Chemistry of Materials, 2002, 14, 4846-4850.	3.2	27
85	Direct electrochemical detection of sodium azide in physiological saline buffers using highly boron-doped diamond electrodes. Sensors and Actuators B: Chemical, 2007, 120, 500-507.	4.0	27
86	Characterization and electrochemical properties of CF4 plasma-treated boron-doped diamond surfaces. Diamond and Related Materials, 2008, 17, 48-54.	1.8	27
87	Comparison of Boronâ€Doped Diamond and Glassy Carbon Electrodes for Determination of Procaine Hydrochloride. Electroanalysis, 2008, 20, 137-143.	1.5	26
88	In Situ Spectroscopic Study on the Surface Hydroxylation of Diamond Electrodes. Analytical Chemistry, 2019, 91, 4980-4986.	3.2	26
89	Effect of sp2 species in a boron-doped diamond electrode on the electrochemical reduction of CO2. Electrochemistry Communications, 2020, 115, 106731.	2.3	26
90	CO ₂ reduction to formic acid at low overpotential on BDD electrodes modified with nanostructured CeO ₂ . Journal of Materials Chemistry A, 2019, 7, 17896-17905.	5.2	25

#	Article	IF	CITATIONS
91	Yeast-based Biochemical Oxygen Demand Sensors Using Gold-modified Boron-doped Diamond Electrodes. Analytical Sciences, 2015, 31, 643-649.	0.8	24
92	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie, 2018, 130, 2669-2673.	1.6	24
93	Molecular engineering of Rashba spin-charge converter. Science Advances, 2018, 4, eaar3899.	4.7	24
94	Electrochemical reduction of CO ₂ using palladium modified boron-doped diamond electrodes: enhancing the production of CO. Physical Chemistry Chemical Physics, 2019, 21, 15297-15301.	1.3	24
95	Crystal-Face-Selective Adsorption of Au Nanoparticles onto Polycrystalline Diamond Surfaces. Langmuir, 2008, 24, 7545-7548.	1.6	23
96	Observation of Proton Transfer Coupled Spin Transition and Trapping of Photoinduced Metastable Proton Transfer State in an Fe(II) Complex. Journal of the American Chemical Society, 2019, 141, 14384-14393.	6.6	23
97	Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products. Beilstein Journal of Organic Chemistry, 2015, 11, 200-203.	1.3	22
98	Photochromism-Induced Amplification of Critical Current Density in Superconducting Boron-Doped Diamond with an Azobenzene Molecular Layer. ACS Applied Materials & Interfaces, 2015, 7, 887-894.	4.0	22
99	Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes. Diamond and Related Materials, 2020, 106, 107874.	1.8	22
100	Nanodiamonds Inhibit Cancer Cell Migration by Strengthening Cell Adhesion: Implications for Cancer Treatment. ACS Applied Materials & Interfaces, 2021, 13, 9620-9629.	4.0	22
101	Electrochemical Pinacol Coupling of Acetophenone Using Boronâ€Đoped Diamond Electrode. ChemElectroChem, 2019, 6, 4153-4157.	1.7	21
102	Toward High-Throughput Screening of NAD(P)-Dependent Oxidoreductases Using Boron-Doped Diamond Microelectrodes and Microfluidic Devices. Analytical Chemistry, 2014, 86, 9570-9575.	3.2	20
103	Cooperative spin-crossover transition from three-dimensional purely π-stacking interactions in a neutral heteroleptic azobisphenolate Fe ^{III} complex with a N ₃ O ₃ coordination sphere. Dalton Transactions, 2017, 46, 5786-5789.	1.6	20
104	<i>In Vivo</i> Real-Time Simultaneous Examination of Drug Kinetics at Two Separate Locations Using Boron-Doped Diamond Microelectrodes. Analytical Chemistry, 2020, 92, 13742-13749.	3.2	20
105	Boron-Doped Diamond Electrode Outperforms the State-of-the-Art Electrochemiluminescence from Microbeads Immunoassay. ACS Sensors, 2022, 7, 1145-1155.	4.0	20
106	Development of neuraminidase detection using gold nanoparticles boron-doped diamond electrodes. Analytical Biochemistry, 2016, 497, 68-75.	1.1	19
107	The Utilization of Boron-doped Diamond Electrodes for the Electrochemical Reduction of CO ₂ : Toward the Production Compounds with a High Number of Carbon Atoms. Electrochemistry, 2019, 87, 109-113.	0.6	19
108	Influence of the Nature of Boronâ€Doped Diamond Anodes on the Dehydrogenative Phenolâ€Phenol Crossâ€Coupling. ChemElectroChem, 2019, 6, 2771-2776.	1.7	19

#	Article	IF	CITATIONS
109	Enzymatic Biosensors with Electrochemiluminescence Transduction. ChemElectroChem, 2022, 9, .	1.7	19
110	Photomagnetic Langmuir–Blodgett films consisting of azobenzene and Prussian Blue: Correlation between the film structure and the photomagnetic efficiency. Science and Technology of Advanced Materials, 2006, 7, 134-138.	2.8	18
111	Electrochemical Detection of Selenium (IV) and (VI) at Gold-Modified Diamond Electrodes. Electrocatalysis, 2013, 4, 367-374.	1.5	18
112	Controlled decoration of boron-doped diamond electrodes by electrochemical click reaction (eâ^'CLICK). Carbon, 2018, 130, 350-354.	5.4	18
113	Electrochemical measurement of lamotrigine using boron-doped diamond electrodes. Electrochimica Acta, 2018, 271, 35-40.	2.6	18
114	Enhancing the Electrochemical Reduction of CO ₂ by Controlling the Flow Conditions: An Intermittent Flow Reduction System with a Boron-Doped Diamond Electrode. ACS Sustainable Chemistry and Engineering, 2021, 9, 5298-5303.	3.2	18
115	Preparation of graded-morphology diamond thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 83, 19-23.	1.7	17
116	Contribution of Coulomb Interactions to a Two-Step Crystal Structure Phase Transformation Coupled with a Significant Change in Spin Crossover Behavior for a Series of Charged Fe ^{II} Complexes from 2,6-Bis(2-methylthiazol-4-yl)pyridine. Inorganic Chemistry, 2018, 57, 1277-1287.	1.9	17
117	An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond. Analyst, The, 2020, 145, 544-549.	1.7	17
118	Synthesis, Crystal structures and Magnetic properties of two new Hetero-bimetallic assemblies. Journal of Coordination Chemistry, 2004, 57, 189-198.	0.8	16
119	Three-dimensional 3d–4f hetero-bimetallic coordination polymers through hydrogen bonds: synthesis, structures and mössbauer spectrum analysis. Journal of Coordination Chemistry, 2004, 57, 855-864.	0.8	16
120	Fabrication of a Microfluidic Device with Boron-doped Diamond Electrodes for Electrochemical Analysis. Electrochimica Acta, 2016, 197, 159-166.	2.6	16
121	Electrochemical oxidation of palmitic acid solution using boron-doped diamond electrodes. Diamond and Related Materials, 2019, 99, 107464.	1.8	16
122	Controlling the diffusion profile of electroactive species for selective anodic stripping voltammetry of cadmium at boron-doped diamond electrodes. Physical Chemistry Chemical Physics, 2013, 15, 142-147.	1.3	15
123	The Role of Coulomb Interactions for Spin Crossover Behaviors and Crystal Structural Transformation in Novel Anionic Fe(III) Complexes from a π-Extended ONO Ligand. Crystals, 2016, 6, 49.	1.0	15
124	Hydroxide Ion Oxidation in Aqueous Solutions Using Boron-Doped Diamond Electrodes. Analytical Chemistry, 2017, 89, 7139-7144.	3.2	15
125	In Situ ATR-IR Observation of the Electrochemical Oxidation of a Polycrystalline Boron-Doped Diamond Electrode in Acidic Solutions. Journal of Physical Chemistry C, 2018, 122, 27456-27461.	1.5	15
126	A New Pathway for CO ₂ Reduction Relying on the Self-Activation Mechanism of Boron-Doped Diamond Cathode. Jacs Au, 2022, 2, 1375-1382.	3.6	15

#	Article	IF	CITATIONS
127	Magnetic Enzymatic Platform for Organophosphate Pesticide Detection Using Boron-doped Diamond Electrodes. Analytical Sciences, 2015, 31, 1061-1068.	0.8	14
128	Electrochemical properties of fluorinated boron-doped diamond electrodes <i>via</i> fluorine-containing plasma treatment. Physical Chemistry Chemical Physics, 2019, 21, 13788-13794.	1.3	13
129	Quantification of electrogenerated chemiluminescence from tris(bipyridine)ruthenium(<scp>ii</scp>) and hydroxyl ions. Physical Chemistry Chemical Physics, 2020, 22, 15413-15417.	1.3	13
130	Structure-distortion-induced photomagnetic effect in azobenzene/polyoxometalate Langmuir–Blodgett films. Dalton Transactions, 2013, 42, 16014.	1.6	12
131	Application of Boronâ€Doped Diamond Microelectrodes for Dental Treatment with Pinpoint Ozoneâ€Water Production. ChemPhysChem, 2013, 14, 2094-2096.	1.0	12
132	Synthesis of Biodiesel Using a Two-compartments Electrochemical Cell. Chemistry Letters, 2014, 43, 1292-1293.	0.7	12
133	Novel Fe(<scp>ii</scp>) spin crossover complexes involving a chalcogen-bond and π-stacking interactions with a paramagnetic and nonmagnetic M(dmit) ₂ anion (M = Ni, Au; dmit =) Tj ETQq1	1 0. 2.8 431	.4 rg₿T /Over
134	Oxidation reaction of dissolved hydrogen sulfide using boron doped diamond. Journal of Electroanalytical Chemistry, 2020, 873, 114411.	1.9	12
135	Further Study of CO 2 Electrochemical Reduction on Palladium Modified BDD Electrode: Influence of Electrolyte. Chemistry - an Asian Journal, 2020, 15, 910-914.	1.7	12
136	Photomagnetic hybrid ultrathin films. Journal of Solid State Electrochemistry, 2007, 11, 781-790.	1.2	11
137	High-Temperature Cooperative Spin Crossover Transitions and Single-Crystal Reflection Spectra of [FellI(qsal)2](CH3OSO3) and Related Compounds. Crystals, 2019, 9, 81.	1.0	11
138	Oxidative Cleavage of the Acyl arbon Bond in Phenylacetone with Electrogenerated Superoxide Anions. ChemElectroChem, 2019, 6, 4194-4198.	1.7	11
139	Metal modified carbon-based electrode for CO2 electrochemical reduction: A review. Journal of Electroanalytical Chemistry, 2021, 898, 115634.	1.9	11
140	Recovery of copper from dilute cupric sulfate solution by electrodeposition method using boronâ€doped diamond electrodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2081-2086.	0.8	10
141	Annealing enhancement in stability and performance of copper modified boron-doped diamond (Cu-BDD) electrode for electrochemical nitrate reduction. Diamond and Related Materials, 2021, 114, 108310.	1.8	10
142	Electrochemical Oxidation Behavior of Nitrogen Dioxide for Gas Detection Using Boron Doped Diamond Electrodes. Electroanalysis, 2022, 34, 752-760.	1.5	10
143	Electrochemical CO2 reduction on sub-microcrystalline boron-doped diamond electrodes. Diamond and Related Materials, 2021, 120, 108608.	1.8	10
144	An efficient, formic acid selective CO ₂ electrolyzer with a boron-doped diamond cathode. Sustainable Energy and Fuels, 2021, 5, 2590-2594.	2.5	10

#	Article	IF	CITATIONS
145	Electrogenerated chemiluminescence of luminol at a boron-doped diamond electrode for the detection of hypochlorite. Analyst, The, 2022, 147, 2696-2702.	1.7	10
146	Cooperative spin transition and thermally quenched high-spin state in new polymorph of [Fe(qsal)2]I3. Hyperfine Interactions, 2012, 206, 1-5.	0.2	9
147	Electrochemical properties of phosphorus doped diamond. Electrochimica Acta, 2015, 179, 599-603.	2.6	9
148	Facet-Dependent Temporal and Spatial Changes in Boron-Doped Diamond Film Electrodes due to Anodic Corrosion. Journal of Physical Chemistry C, 2017, 121, 26742-26750.	1.5	9
149	In situ ATR-IR study of Fe(CN)63â^'/Fe(CN)64â^' redox system on boron-doped diamond electrode. Diamond and Related Materials, 2019, 93, 50-53.	1.8	9
150	Enhancement of coercivity of self-assembled stacking of ferrimagnetic and antiferromagnetic nanocubes. Nanoscale, 2020, 12, 7792-7796.	2.8	9
151	Modification of boron-doped diamond electrodes with gold–palladium nanoparticles for an oxygen sensor. Analyst, The, 2021, 146, 2842-2850.	1.7	9
152	Modulation of critical current density in polycrystalline boron-doped diamond by surface modification. Physica Status Solidi (B): Basic Research, 2013, 250, 1943-1949.	0.7	8
153	Oxidation of hydroxide ions in weak basic solutions using boron-doped diamond electrodes: effect of the buffer capacity. Analyst, The, 2019, 144, 4499-4504.	1.7	8
154	In situ infrared spectroscopy of dopamine oxidation/reduction reactions on a polycrystalline boron-doped diamond electrode. Carbon, 2021, 171, 814-818.	5.4	8
155	Anodic Oxidation of Phenols: A Key Step for the Synthesis of Natural Products. Chemical Record, 2021, 21, 2254-2268.	2.9	8
156	Recent progress in direct urea fuel cell. Open Chemistry, 2021, 19, 1116-1133.	1.0	8
157	First Observation of Photoinduced Magnetization for the Cyano-Bridged 3d–4f Heterobimetallic Assembly Nd(DMF)4(H2O)3(Â-CN)Fe(CN)5ÂH2O (DMF=N,N-Dimethylformamide). Hyperfine Interactions, 2004, 156/157, 143-149.	0.2	7
158	New Trends on the Boron-Doped Diamond Electrode: From Fundamental Studies to Applications. International Journal of Electrochemistry, 2012, 2012, 1-2.	2.4	7
159	Fabrication of boron doped diamond chip electrodes for single drop analysis. RSC Advances, 2013, 3, 25636.	1.7	7
160	Antiferromagnetic Transition in a Novel Star-shaped High-spin Fe(III) Tetranuclear Cluster from a Mononuclear Coordination Anion Featuring π-Extended Schiff Base Ligands. Chemistry Letters, 2015, 44, 840-842.	0.7	7
161	Co—Fe Prussian Blue Analogue Intercalated into Diamagnetic Mg—Al Layered Double Hydroxides. Nanomaterials and Nanotechnology, 2016, 6, 26	1.2	7
162	Spin-Singlet Transition in the Magnetic Hybrid Compound from a Spin-Crossover Fe(III) Cation and ï€-Radical Anion. Inorganics, 2017, 5, 54.	1.2	7

#	Article	IF	CITATIONS
163	Increasing the Electric Doubleâ€Layer Capacitance in Boronâ€Doped Diamond Electrodes. ChemElectroChem, 2019, 6, 1683-1687.	1.7	7
164	Effect of Boron-Doping Level and Surface Termination in Diamond on Electrogenerated Chemiluminescence. ACS Applied Electronic Materials, 2021, 3, 4180-4188.	2.0	7
165	Dopamine Detection on Boron-doped Diamond Electrodes Using Fast Cyclic Voltammetry. Chemistry Letters, 2012, 41, 224-226.	0.7	6
166	Influence of Supporting Electrolyte on the Electrochemical Oxidation of Formic Acid on Boron-Doped Diamond Electrodes. Bulletin of the Chemical Society of Japan, 2013, 86, 749-754.	2.0	6
167	Gigantic Photomagnetic Effect at Room Temperature in Spiropyran-Protected FePt Nanoparticles. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700161.	1.2	6
168	Electrochemical mineralization of dimethyl sulfoxide on boron-doped diamond electrodes. Environmental Technology and Innovation, 2019, 15, 100409.	3.0	6
169	Efficient photocatalytic conversion of benzene to phenol on stabilized subnanometer WO ₃ quantum dots. Catalysis Science and Technology, 2021, 11, 6537-6542.	2.1	6
170	Fabrication of an all-diamond microelectrode using a chromium mask. Chemical Communications, 2019, 55, 897-900.	2.2	5
171	Boron position-dependent surface reconstruction and electronic states of boron-doped diamond(111) surfaces: an <i>ab initio</i> study. Physical Chemistry Chemical Physics, 2021, 23, 15628-15634.	1.3	5
172	Localized Graphitization on Diamond Surface as a Manifestation of Dopants. Advanced Materials, 2021, 33, e2103250.	11.1	5
173	Back Cover (Phys. Status Solidi A 12/2009). Physica Status Solidi (A) Applications and Materials Science, 2009, 206, .	0.8	4
174	Nickel–Cobalt Modified Boron-Doped Diamond as an Electrode for a Urea/H ₂ O ₂ Fuel Cell. Bulletin of the Chemical Society of Japan, 2021, 94, 2922-2928.	2.0	4
175	Blood Oxygen Sensor Using a Boron-Doped Diamond Electrode. Analytical Chemistry, 2022, 94, 3948-3955.	3.2	4
176	Application of Boron-doped Diamond Electrodes: Focusing on the Electrochemical Reduction of Carbon Dioxide. Electrochemistry, 2022, 90, 101002-101002.	0.6	4
177	Conductive-synthetic diamond materials in meeting the sustainable development goals. Current Opinion in Solid State and Materials Science, 2022, 26, 101019.	5.6	4
178	57Fe M^ ^ouml;ssbauer, UV-visible, and FT-IR Study on Photoinduced Spin Transition of Fell -Triazole Complex. Journal of Nuclear and Radiochemical Sciences, 2007, 8, 1-3.	0.7	3
179	Preparation of dihydroquinazoline carbohydrazone Fe(ii) complexes for spin crossover. New Journal of Chemistry, 2016, 40, 4534-4542.	1.4	3
180	Electrochemical Measurement of Bismuth Clusters in Dendrimer Through Transformation from Atomicity Controlled Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 169-173.	1.9	3

#	Article	IF	CITATIONS
181	Unique properties of fine bubbles in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. Electrochimica Acta, 2021, 389, 138769.	2.6	3
182	Core–shell copper-gold nanoparticles modified at the boron-doped diamond electrode for oxygen sensors. Analytical Methods, 2022, 14, 726-733.	1.3	3
183	Simultaneous electrochemical detection of ozone and free chlorine with a boron-doped diamond electrode. Analyst, The, 2022, 147, 1655-1662.	1.7	3
184	Diamond Electrochemistry. , 2017, , .		2
185	Trends in Synthetic Diamond for Electrochemical Applications. ChemElectroChem, 2019, 6, 4330-4331.	1.7	2
186	Weak Antilocalization and Spin Hall Effect in Pt Films Doped with Molecular Spin. ACS Applied Electronic Materials, 2020, 2, 2098-2103.	2.0	2
187	Fabrication and electrochemical properties of boron-doped SiC. Carbon, 2021, 174, 240-247.	5.4	2
188	Electrochemical Sensing Applications Using Diamond Microelectrodes. Bulletin of the Chemical Society of Japan, 2021, 94, 2838-2847.	2.0	2
189	Analysis of Pharmacokinetics in the Cochlea of the Inner Ear. Frontiers in Pharmacology, 2021, 12, 633505.	1.6	1
190	Redox-Induced Modification of Magnetism in Ni Thin Film. E-Journal of Surface Science and Nanotechnology, 2009, 7, 787-790.	0.1	1
191	Study of nitrate contaminants removal from groundwater on copper modified BDD electrode. E3S Web of Conferences, 2020, 194, 04024.	0.2	1
192	Study of carbon dioxide electrochemical reduction in flow cell system using copper modified boron-doped diamond. E3S Web of Conferences, 2020, 211, 03011.	0.2	1
193	Electroanalysis based on carbon nanomaterials. Electroanalysis, 0, , .	1.5	1
194	Electrochemical CO2 Reduction. , 2022, , 161-176.		1
195	Detection of dissolved hydrogen in water using platinum-modified boron doped diamond electrodes. Journal of Electroanalytical Chemistry, 2022, 917, 116425.	1.9	1
196	Applications of Boron-doped Diamond Electrodes to Electrochemical Sensors. Hyomen Kagaku, 2008, 29, 164-172.	0.0	0
197	Optical tuning of moleculeâ€induced magnetism at nonâ€magnetic semiconductor nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2851-2856. 	0.8	0
198	Modulation of critical current density in polycrystalline boron-doped diamond by surface modification. Physica Status Solidi (B): Basic Research, 2013, 250, .	0.7	0

#	Article	IF	CITATIONS
199	B23-P-09Electron energy loss spectroscopy of boron doped diamond electrodes. Microscopy (Oxford,) Tj ETQq1 1	0.784314 0.7	gBT /Ove
200	Crystal structure of 5,5â€2-dibromo-3,3â€2-di-tert-butyl-6,6â€2-dimethylbiphenyl-2,2â€2-diol. Acta Crystallographi Section E: Crystallographic Communications, 2015, 71, o278-o279.	cð.2	0
201	Zanamivir immobilized magnetic beads for voltammetric measurement of neuraminidase at gold-modified boron doped diamond electrode. AIP Conference Proceedings, 2016, , .	0.3	0
202	Screening metal nanoparticles using boron-doped diamond microelectrodes. AIP Conference Proceedings, 2016, , .	0.3	0
203	Post-Functionalization of Room-Temperature Ferromagnetic Nanoparticle via Surface Modification. Hyomen Kagaku, 2017, 38, 30-34.	0.0	Ο
204	Electrochemical Properties of BDD Electrodes by Surface Control. , 2022, , 9-22.		0
205	A Method Designed for Point-of-care System Monitoring Plasma Concentration of an Anticancer Molecular Targeting Drug with Diamond Electrode. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 2-YIA-58.	0.0	0