Chuan-Shu He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9844333/publications.pdf

Version: 2024-02-01

471509 501196 1,110 29 17 28 h-index citations g-index papers 29 29 29 1073 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced reductive reactivity of zero-valent iron (ZVI) for pollutant removal by natural organic matters (NOMs) under aerobic conditions: Correlation between NOM properties and ZVI activity. Science of the Total Environment, 2022, 802, 149812.	8.0	11
2	Surface oxygen vacancies formation on Zn2SnO4 for bisphenol-A degradation under visible light: The tuning effect by peroxymonosulfate. Journal of Hazardous Materials, 2022, 426, 127828.	12.4	19
3	Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species. Water Research, 2022, 217, 118402.	11.3	66
4	Effects of Molecular Structure on Organic Contaminants' Degradation Efficiency and Dominant ROS in the Advanced Oxidation Process with Multiple ROS. Environmental Science & Environmental Science	10.0	161
5	Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chemical Engineering Journal, 2021, 414, 128713.	12.7	96
6	Nano-sized Zero-Valent Iron Coupled with Sulfidation and Ferrous Implantation Enhances the Reduction–Oxidation Removal of Iodinated Contrast Medium. ACS ES&T Water, 2021, 1, 2128-2138.	4.6	2
7	Size-Dependent Response of the Reductive Reactivity of Zerovalent Iron toward the Coexistence of Natural Organic Matter. ACS ES&T Engineering, 2021, 1, 1587-1596.	7.6	12
8	Mixed-culture biocathodes for acetate production from CO2 reduction in the microbial electrosynthesis: Impact of temperature. Science of the Total Environment, 2021, 790, 148128.	8.0	31
9	Enhanced hydrodeiodination of iodinated contrast medium by sulfide-modified nano-sized zero-valent iron: Kinetics, mechanisms and application prospects. Chemical Engineering Journal, 2020, 401, 126050.	12.7	31
10	Active N dopant states of electrodes regulate extracellular electron transfer of Shewanella oneidensis MR-1 for bioelectricity generation: Experimental and theoretical investigations. Biosensors and Bioelectronics, 2020, 160, 112231.	10.1	15
11	Coexistence of humic acid enhances the reductive removal of diatrizoate <i>via</i> depassivating zero-valent iron under aerobic conditions. Journal of Materials Chemistry A, 2020, 8, 14634-14643.	10.3	11
12	Interactions between nanoscale zero valent iron and extracellular polymeric substances of anaerobic sludge. Water Research, 2020, 178, 115817.	11.3	74
13	Insights into short- and long-term effects of loading nickel nanoparticles on anaerobic digestion with flocculent sludge. Environmental Science: Nano, 2019, 6, 2820-2831.	4.3	7
14	Cathode-Introduced Atomic H* for Fe(II)-Complex Regeneration to Effective Electro-Fenton Process at a Natural pH. Environmental Science & Eamp; Technology, 2019, 53, 6927-6936.	10.0	54
15	Aerobic removal of iodinated contrast medium by nano-sized zero-valent iron: A combination of oxidation and reduction. Journal of Hazardous Materials, 2019, 373, 417-424.	12.4	19
16	Undiscovered Mechanism for Pyrogenic Carbonaceous Matter-Mediated Abiotic Transformation of Azo Dyes by Sulfide. Environmental Science & Environmental	10.0	42
17	Bioelectrochemical decolorization of a reactive diazo dye: Kinetics, optimization with a response surface methodology, and proposed degradation pathway. Bioelectrochemistry, 2019, 128, 9-16.	4.6	30
18	Progressive stress response of the anaerobic granular sludge to nickel nanoparticles: experimental investigations and mathematic modelling. Environmental Science: Nano, 2019, 6, 1536-1548.	4.3	6

#	Article	IF	CITATIONS
19	A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems. Chemosphere, 2018, 204, 251-256.	8.2	14
20	Formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine: Impact of UV/H2O2 pre-oxidation. Science of the Total Environment, 2018, 640-641, 764-771.	8.0	14
21	A fixed-point titration method for the determination of ammonium in anaerobic systems. Analytical Methods, 2018, 10, 3552-3556.	2.7	0
22	Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation. Water Research, 2017, 127, 32-40.	11.3	110
23	Changing profiles of bound water content and distribution in the activated sludge treatment by NaCl addition and pH modification. Chemosphere, 2017, 186, 702-708.	8.2	74
24	Dehalogenation of diatrizoate using nanoscale zero-valent iron: impacts of various parameters and assessment of aerobic biological post-treatment. RSC Advances, 2017, 7, 27214-27223.	3.6	12
25	Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors. Scientific Reports, 2016, 6, 27243.	3.3	20
26	Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics. Scientific Reports, 2016, 6, 30082.	3.3	34
27	Hydrodynamics of an Electrochemical Membrane Bioreactor. Scientific Reports, 2015, 5, 10387.	3.3	19
28	Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. Chemosphere, 2015, 140, 12-17.	8.2	116
29	The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination. Scientific Reports, 2014, 4, 5239.	3.3	10