Jodene Eldstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9842529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel ion conducting route besides the central pore in an inherited mutant of Gâ€proteinâ€gated inwardly rectifying K ⁺ channel. Journal of Physiology, 2022, 600, 603-622.	2.9	8
2	Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nature Communications, 2022, 13, .	12.8	15
3	Hormonal Signaling Actions on Kv7.1 (KCNQ1) Channels. Annual Review of Pharmacology and Toxicology, 2021, 61, 381-400.	9.4	4
4	ML277 regulates KCNQ1 single-channel amplitudes and kinetics, modified by voltage sensor state. Journal of General Physiology, 2021, 153, .	1.9	10
5	The IKs Ion Channel Activator Mefenamic Acid Requires KCNE1 and Modulates Channel Gating in a Subunit-Dependent Manner. Molecular Pharmacology, 2020, 97, 132-144.	2.3	16
6	<i>I</i> _{<i>Ks</i>} ion-channel pore conductance can result from individual voltage sensor movements. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7879-7888.	7.1	27
7	Single channel kinetic analysis of the cAMP effect on <i>I_{Ks}</i> mutants, S209F and S27D/S92D. Channels, 2018, 12, 276-283.	2.8	5
8	The I Channel Response to cAMP Is Modulated by the KCNE1:KCNQ1 Stoichiometry. Biophysical Journal, 2018, 115, 1731-1740.	0.5	5
9	Photo-Cross-Linking of I Ks Demonstrates State-Dependent Interactions between KCNE1 and KCNQ1. Biophysical Journal, 2017, 113, 415-425.	0.5	18
10	Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening. Nature Communications, 2017, 8, 1730.	12.8	65
11	cAMP-dependent regulation of <i>IKs</i> single-channel kinetics. Journal of General Physiology, 2017, 149, 781-798.	1.9	20
12	Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride. Molecular Pharmacology, 2016, 90, 80-95.	2.3	13
13	Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up toÂ4:4. ELife, 2016, 5, .	6.0	63
14	Microscopic mechanisms for long QT syndrome type 1 revealed by single-channel analysis of IKs with S3 domain mutations in KCNQ1. Heart Rhythm, 2015, 12, 386-394.	0.7	25
15	Single-channel basis for the slow activation of the repolarizing cardiac potassium current, <i>I</i> _{<i>Ks</i>} . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E996-1005.	7.1	45
16	The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome. Expert Reviews in Molecular Medicine, 2011, 13, e38.	3.9	25
17	Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of <i>IKs</i> . Journal of General Physiology, 2010, 135, 433-448.	1.9	26
18	Modeling of high-affinity binding of the novel atrial anti-arrhythmic agent, vernakalant, to Kv1.5 channels. Journal of Molecular Graphics and Modelling, 2009, 28, 226-235.	2.4	9

#	Article	IF	CITATIONS
19	The Molecular Basis of High-Affinity Binding of the Antiarrhythmic Compound Vernakalant (RSD1235) to Kv1.5 Channels. Molecular Pharmacology, 2007, 72, 1522-1534.	2.3	55
20	Localization of Kv1.5 channels in rat and canine myocyte sarcolemma. FEBS Letters, 2006, 580, 6039-6046.	2.8	45