
Yamin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9841896/publications.pdf Version: 2024-02-01

YAMIN ZHANC

#	Article	IF	CITATIONS
1	The design of quinoxaline based unfused non-fullerene acceptors for high performance and stable organic solar cells. Chemical Engineering Journal, 2022, 427, 131473.	12.7	32
2	Non-fullerene acceptors based on multiple non-covalent interactions for low cost and air stable organic solar cells. Organic Electronics, 2021, 93, 106132.	2.6	18
3	Unfused-ring small molecule acceptors based on A1-D-A2-D-A1 architecture with low non-radiative energy loss and excellent air stability. Materials Today Energy, 2021, 21, 100802.	4.7	5
4	High Performance Thickâ€Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Advanced Energy Materials, 2019, 9, 1902688.	19.5	69
5	Achieving Both Enhanced Voltage and Current through Fineâ€Tuning Molecular Backbone and Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.	19.5	73
6	A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.	21.0	48
7	Fluorination-modulated end units for high-performance non-fullerene acceptors based organic solar cells. Science China Materials, 2019, 62, 1210-1217.	6.3	14
8	New Anthraceneâ€Fused Nonfullerene Acceptors for Highâ€Efficiency Organic Solar Cells: Energy Level Modulations Enabling Match of Donor and Acceptor. Advanced Energy Materials, 2019, 9, 1803541.	19.5	95
9	Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nature Electronics, 2019, 2, 513-520.	26.0	255
10	A New Nonfullerene Acceptor with Near Infrared Absorption for High Performance Ternaryâ€Blend Organic Solar Cells with Efficiency over 13%. Advanced Science, 2018, 5, 1800307.	11.2	111
11	A Halogenation Strategy for over 12% Efficiency Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702870.	19.5	159
12	Synergistic Modifications of Side Chains and End Groups in Small Molecular Acceptors for High Efficient Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800053.	5.8	23
13	Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30, e1707508.	21.0	184
14	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	21.0	214
15	Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.	12.6	2,262
16	A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells. Science China Chemistry, 2017, 60, 552-560.	8.2	16
17	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A, 2016, 4, 10409-10413.	10.3	104
18	Dithienopyrrole Based Small Molecule with Low Band Gap for Organic Solar Cells. Chinese Journal of Chemistry, 2015, 33, 852-858.	4.9	15

#	Article	IF	CITATIONS
19	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	21.0	159
20	Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.	10.3	26